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ABSTRACT 
Background: Evidence has been steadily accumulating to document gene-by-environment (G×E) interactions 

for cardiovascular disease (CVD) related traits. However, the underlying mechanisms are still unclear. DNA 

methylation, one of the epigenetic mechanisms directly affecting genetic nucleotides and their interaction with 

regulatory proteins, may represent one of the potential mechanisms for the observed G×E interactions, based on 

its role as the  interface between the ‘nature’ and ‘nurture’. 

Objectives: To explore the interplay among DNA methylation, genetic variants, and environmental factors, we 

examined 1) the association between single nucleotide polymorphism (SNP) and DNA methylation; and 2) the 

role that DNA methylation plays in G×E interactions. 

Methodology: We applied a genome-wide approach with an integrated bioinformatics analysis to publicly 

available datasets of both genotypes (the HapMap project) and methylation patterns in B lymphocyte cell line 

(the Encyclopedia of DNA Elements (ENCODE) project) to explore the relationship between SNPs and DNA 

methylation patterns. A candidate gene approach was utilized to explore the potential mechanistic role that 

DNA methylation plays in significant G×E interactions at CVD-related loci, including APOE, IL6, ABCA1, 

APOA5, PCSK9, HMGCR and HNF1A. DNA methylation was measured by the Infinium Human Methylation 

450K BeadChip in the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study. Meta-analysis 

with 7 cohorts in the Cohorts for Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium 

was conducted to explore the G×E interactions for blood lipids. Correlation between DNA methylation and 

gene expressions across 17 available cell lines in the ENCODE consortium were analyzed. 

Results: On a genome-wide scale, DNA methylation patterns are associated with haplotypes of multiple CpG-

related SNPs (CGSs) within the same linkage disequilibrium (LD) block (P < 0.0001). At the APOE locus, the 

promoter SNP rs405509 interacts with age in the GOLDN population to modulate the methylation of the 

promoter CpG site cg01032398 (P = 0.03). At the IL6 locus, erythrocyte N3 polyunsaturated fatty acids 

(PUFAs) interact with the promoter SNP rs2961298 to modulate the methylation of a promoter CpG site 

cg01770232 (P = 0.02), which was suggested as a potentially functional methylation site based on its consistent 

correlation with IL6 gene expression in ENCODE (P = 0.0005) and plasma concentration of IL6 in GOLDN (P 

= 0.03). Meta-analysis with 7 cohorts in the CHARGE consortium found nominal interactions between 

circulating eicosapentaenoic acid (EPA) and the ABCA1 promoter SNP rs2246293 for blood high-density 

lipoprotein (HDL) cholesterol level (P = 0.006), and between circulating alpha-linolenic acid (ALA) and APOE 

promoter SNP rs405509 for plasma triglyceride (TG) (P = 0.01). Analysis with methylation in GOLDN and 

gene expression in ENCODE suggested that the genotype-dependent methylation of CpG site cg14019050 (P = 

3.51×10
-18

 and 0.007 for association and interaction analysis, respectively) and cg04406254 (P = 0.008 and 

0.009 for association and interaction analysis, respectively) may be mechanistically linked to the observed 

interactions of loci of ABCA1 and APOE, respectively. 

Conclusion: DNA methylation patterns are associated with haplotypes of multiple CGSs within the same LD 

block. Genotype-dependent methylation may account, in part, for the mechanisms underlying observed G×E 

interactions in APOE, IL6, and ABCA1. Our studies call for further demonstration with interventional studies 

and molecular mechanistic experiments, with the ultimate goal of providing fundamental evidence to support 

genetically-based strategies for the development of personalized medical care.
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Introduction 
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I. Overview 

 

Cardiovascular disease (CVD) is the leading cause of total mortality not only in USA but also 

globally. According to the American Heart Association (AHA) report based on the 2010 data [1], 

the overall rate of death attributed to CVD was 235.5 per 100,000 USA population. Also, CVD 

accounted for approximately 1 out of 3 deaths in USA, and more than 2150 Americans die of 

CVD each day with an average of 1 death every 40 seconds. According to the World Health 

Organization (WHO) Fact Sheet, it was estimated that 17.3 million people die from CVDs in 

2008, representing 30% of all global deaths. Over 80% of CVD deaths take place in low- and 

middle-income countries. The most important is that CVD are projected to remain the single 

leading cause of death worldwide.  

 

With the goal to cure and prevent CVD, numerous risk factors have been identified, including 

dyslipidemia, inflammation, obesity, hypertension, smoking, and diabetes [2]. Dyslipidemia and 

chronic inflammation are two critical ones. Dyslipidemia refers to abnormalities of 

concentrations of a set of blood lipids. High concentrations of triglyceride (TG), total cholesterol 

(TC), and low density lipoprotein cholesterol (LDL-C), and low concentration of high density 

lipoprotein cholesterol (HDL-C) constitute the atherogenic dyslipidemia. According to the 

American Heart Association (AHA) [3], the prevalence of adults (age ≥ 20 y) having high 

triglyceride (TG＞150 mg/dl), high total cholesterol (TC≥ 200 mg/dl), high LDL-C (LDL-

C≥130 mg/dl), and low HDL-cholesterol (HDL-C≤ 40 mg/dl) is 33%, 44.4%, 31.9%, and 18.9% 

respectively. Also, inflammation is part of the complex biological response to harmful stimuli, 
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which is common to a number of chronic diseases. However both dyslipidemia and inflammation 

are preventable or reversible by having a healthy lifestyle.  

 

Of the factors that define a healthy lifestyle, diet is one of the most important components and 

the potential benefits of maintaining a healthy diet are well-established. Specifically, dietary fatty 

acids are associated with risk factors for CVD and different types of fatty acids have different 

effects. For example, although it is still under debate, in general, unsaturated fatty acids tend to 

increase HDL-C[4], reduce TG [5], and decrease IL-6 [6] compared to saturated fatty acids 

(SFA). Although monounsaturated fatty acids (MUFAs) and polyunsaturated fatty acids (PUFAs) 

differ in the magnitude of these beneficial effects [7], anti-atherosclerosis effect has been 

demonstrated for N3 not N6 PUFAs [8-18]. In addition, individuals exhibit different 

physiological responses to dietary fatty acids, reflecting, in part, the contributions of genetic 

variability [19].  

 

The role of genetic factors in contributing to these inter-individual differences in lipid responses 

to dietary fatty acids has been widely studied. Our group has found that the association between 

dietary intake of total fat and plasma HDL-C was modified by the genetic variants located within 

hepatic lipase gene (LIPC) [20], and that the association between dietary PUFA intake and 

plasma fasting TG is modified by the genetic variants located within APOA5 gene [21]. The 

effect of PUFA on HDL may differ according to different genotypes of several genes such as 

apolipoprotein A5 (APOA5), apolipoprotein A1 (APOA1), interleukin 6 (IL6), nuclear factor 

kappa-light-chain enhancer of activated B cells (NF-ĸB), tumor necrosis factor alpha (TNF-α) 
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[22-25]. In addition, there is also a genetically-based difference in TG response to N3 PUFAs 

[26, 27]. As a result of wide availability of new genetic technologies such as Genome-wide 

Association Studies (GWAS) and next generation sequencing, an enriched catalogue of common 

or rare single nucleotide polymorphisms (SNPs) has been formulated. However, the variation 

explained by all these genetic variants only account for less than 20%, indicating the existence of 

other sources of variability, such as epigenetic mechanisms.  

 

Epigenetics has recently emerged as a research area of intense interest and growth. The 

definition of epigenetics underwent a series of changes as biological knowledge expanded. In 

1940, ‘epigenetics’ was first defined as “… the interactions of genes with their environment 

which bring the phenotype into being…” by developmental biologists [28]. In the 1990s, 

epigenetics was described as the study of changes in gene expression which were not a result of 

changes in the DNA sequence [29]. Recently, inspired by genome-wide technologies, a new term 

‘epigenomics’ has been coined, targeting the study of all factors contributing to changes in 

genome-wide chromatin structure including DNA methylation, histone modification, and 

chromatin remodeling [30].  

 

Compared to the other two epigenetic mechanisms, DNA methylation is the most stable one and 

is the only one with direct relationships with DNA residues. DNA methylation is the addition of 

a methyl group directly onto DNA residues such as cytosine and adenine [31] and the C
5
-

methylcytosine modification is the major form in eukaryotes. DNA methylation can occur in 

different regions of the genome such as repetitive sequences, gene body, promoter related CpG 
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island and CpG island shore, which are located up to 2kb upstream of the CpG island [30]. DNA 

methylation patterns in different regions present different functions. For example, gene silencing 

is correlated with hypermethylation in promoter regions rather than in the gene body [32]. Also, 

cancer and aging are correlated with hypomethylation of repetitive elements while this is not the 

case for methylation of specific genes. Considering the different functionalities of DNA 

methylation in different regions, studies of DNA methylation occurring in specific sites of 

specific genes could provide more interpretable and meaningful explanations.  

 

Similar to all the other epigenetic mechanisms, DNA methylation may act as a biomarker of the 

effect of environmental factors on the genetic structures. A wide array of environmental factors 

have been identified to affect DNA methylation patterns, including aging [33, 34], dietary fatty 

acids [35-37], malnutrition [38-40], dietary protein [41, 42], methyl-donors [43-45], chemical 

pollutants [46-48], sun exposure [49], and smoking [50, 51]. The connection of aging with DNA 

methylation was first observed in the candidate tumor suppressor genes, of which the 

methylation is increased with age, leading to the gene silencing [52]. Later, it was reported that 

the aging effects on DNA methylation is a prevalent phenomenon across the whole genome 

based on studies with monozygotic and dizygotic twins, which showed that the variation in DNA 

methylation increase significantly with age [33, 34].  Also, dietary fatty acids were suggested to 

regulate DNA methylation patterns. The intervention of a high fat diet was found to increase the 

DNA methylation of a metabolically related gene, peroxisome proliferator-activated receptor 

gamma, coactivator 1alpha (PPARGC1A); however, after the intervention was withdrawn, DNA 

methylation of PPARGC1A returned back to its baseline level [53]. The methylation of the same 

gene, PPARGC1A, was further reported to be affected by palmitic acid (PA) and oleic acid (OA) 
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[36]. Arachidonic acid (AA) and docosahexaenoic acid (DHA) were shown to affect DNA 

methylation of fatty acid desaturase 2 (Fads2) in mice liver [35]. In addition, eicosapentaenoic 

acid (EPA) was found to have demethylation effect on the tumor suppressor gene [37].  

 

Besides numerous evidence of the effects of environmental factors, DNA methylation is shown 

to be related with different phenotypes. For instance, DNA methylation has been proposed as one 

mechanism of atherosclerosis [54]. In apolipoprotein E (ApoE)
 
knock out mice, DNA 

methylation changes were shown to precede any histological sign of atherosclerosis [55]. In 

addition, the same study also found associations between global DNA hypermethylation and 

dyslipidemia, characterized by the atherogenic lipoproteins. An in vitro oligonucleotide binding 

assay found that a CG-rich 17-nucleotide sequence could bind to ApoA1 [56], suggesting the 

relationship between lipoproteins and DNA methylation target sites, CpG dinucleotides. Besides 

affecting lipid concentrations, DNA methylation is also involved in inflammation. IL-6 is an 

acute phase protein induced during inflammation that functions as an inducer of differentiation 

of inflammatory helper T cells [57, 58]. DNA methylation has been identified as one mechanism 

of transcription regulation of IL6. For example, methylation of the promoter region in IL6 is 

negatively correlated with gene expression [59] in peripheral blood mononuclear cells (PBMCs) 

and the DNA methyltransferase inhibitor 5-aza-2’-deoxycytidine (DAC) induces IL6 

transcription [60] in cancer cells. This silencing of IL6 expression may be due to the binding of 

methyl-CpG-binding protein 2 (MeCP2) to the hypothetical binding sites in IL6 gene, which is 

close to its transcription start site.  
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Based on the potential interplay between genetic variations and epigenetic mechanisms to 

modulate CVD risk factors, we aimed to test the interplay among genetic variants, DNA 

methylation, and environmental factors to modulate risk factors of CVD.  

 

The significance of this research is related to its eventual translation into the arena of public 

health. The traditional concept of ‘one size fits all’ is limited, and the study of epigenetics will 

facilitate knowledge to further the development of personalized medical care. In this case, it is 

necessary to generate a more complete understanding of both genetic and epigenetic mechanisms 

contributing to the substantial inter-individual variations of response to environmental challenges. 

Through this research, we will also expand our knowledge of the molecular mechanism of gene-

environment interaction and provide more solid evidence to promote new dietary guidelines.  
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II. Literature review: 

 

1. Gene-by-environment (G×E) interaction 

 

The connection between environment and phenotype is not as straightforward as what we 

expected, and there is a substantial variability in the individuals’ response to the same 

environmental factor [1-4]. A well-controlled randomized clinical trial with low fat diets 

according to National Cholesterol Education Program (NCEP) Step 2 found that there was a 

large variability in lipid response to the diet. For example, the changes in low density lipoprotein 

(LDL) cholesterol ranged from +3% to -55% in men and from +13% to -39% in women [1]. A 

systematic analysis showed a normal distribution of the inter-individual variability in the lipid 

response to dietary interventions, including hypo-responders, hyper-responders, and normal-

responders [2]. An intervention study with supervised cycle ergometer exercise found a marked 

variability in the high density lipoprotein (HDL) cholesterol response, within the range of 

approximately 30% [3]. Also, a cross-sectional study with 1,143 adults suggested that the 

magnitude of day-to-day variability of the cortisol awaking response increased with age among 

men [4]. The existence of such inter-individual variability suggested a modification role of 

genetic factors. 

 

A wide array of evidence has been accumulated to indicate that genetic variants may contribute 

to the observed substantial inter-individual variability in the responses to different types of 

environmental factors. In the Framingham study, we have observed that the association between 

dietary total fat intake and plasma HDL cholesterol could be modified by the genetic variant 

located within promoter region of hepatic lipase gene (LIPC) [5]. Later, in the same well-
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phenotyped population, we identified that the association between dietary polyunsaturated fatty 

acids (PUFAs) and the fasting plasma level of triglyceride (TG) may be modified by the 

promoter variant of apolipoprotein A5 (APOA5) [6]. Also, the aging effect on the Alzheimer’s 

disease was found to be modified by the genetic variants characterizing different isoforms of 

apolipoprotein E (ApoE) [7]. Physical activity was found to have interaction with the genetic 

variants located within the FTO (fat mass and obesity associated gene) locus to modulate obesity 

in both African Americans and European Americans [8]. Smoking has been reported to interact 

with genetic variants within the inflammation related genes to modulate serum concentrations of 

inflammation markers [9-11]. Having alcohol intake greater than 20 g per day was found to 

interact with steatosis to affect liver fibrosis progression in 142 untreated patients showing 

positive for anti-hepatic C virus tests [12]. Despite extensive examples of such G×E interactions 

[13-15], our knowledge of the underlying mechanism to explain the observed G×E interaction is 

still limited. Epigenetic mechanism may partially contribute to the observed G×E interaction 

based on its established relationships with both genetics and environment.  

 

2. Epigenetics and DNA methylation 

2.1 Overview of epigenetics 

Epigenetics acts as the cross-talk between the genome and environment because it studies the 

genetic response to the environmental factors. There are three major epigenetic mechanisms, 

including DNA methylation, histone modification, and chromatin remodeling. DNA methylation 

mechanism adds a methyl group onto DNA nucleotide such as cytosine and adenine [16]. With 

respect to histone modifications, a wide array of modifications were added to the histone tails, 

such as methylation, acetylation, phosphorylation, ubiquitylation, sumoylation, ADP ribosylation, 
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deamination, proline isomerization, crotonylation, propionylation, butyrylation, formylation, 

hydroxylation, and O-GlcNAcylation [17]. In terms of the chromatin remodeling mechanism, 

ATP-dependent enzymes remodel and control chromatin structure and assembly to make it 

become active or inactive to the extrinsic stimulus [18]. All of these epigenetic mechanisms have 

been suggested to play a critical role in developmental biology and complex diseases.  

 

2.2 DNA methylation and DNA sequence 

2.2.1 DNA methylation, CpG dinucleotides, CpG island 

 

DNA methylation has the most direct contact with DNA nucleotide compared to the other two 

epigenetic mechanisms because the methyl-group was added directly on top of DNA nucleotide. 

In mammalian cells, most DNA methylations occur on the CpG dinucleotides, the major 

components for the CpG islands [19]. It is widely agreed that CpG islands are CpG dinucleotide 

enriched regions. However, the definitions of CpG islands have undergone an evolution from 

sliding window based methodology to statistics based test and currently to the experimental data 

based machine learning prediction. In 1987, Gardiner-Garden and Frommer [20] made the first 

definition of CpG islands based on vertebrate genomes sequence characteristics. They defined 

CpG island as “ a stretch of DNA sequence where moving average of % G+C was greater than 

50, and the moving average of ratio of the observed to expected CpG was greater than 0.6.” 

These calculations are based on 100 bp window with sliding across the sequence at 1 bp intervals. 

Due to the lack of considerations of repetitive elements, the first definition has great false 

positive. In this case, Takai and Jones set up more stringent criteria for CpG islands, including 

criteria of having %G+C greater than 55, ratio of observed to expected CpG greater than 0.65 
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and sequence length being ≥ 500 bp. With Takai and Jones’ criteria, a web page service 

algorithm “CpGIS” was developed [21]. Furthermore, Ponger [22] extended their criteria to 

estimate the transcription start sites associated CpG islands with algorithm “CpGProD”. 

However, both “CpGIS” and “CpGProD” are subjective and computationally inefficient for the 

analysis of the genome-wide DNA sequences, so a new definition, named “CpGcluster” [23], 

was proposed. This algorithm is based on statistical test of the physical distance of neighboring 

CpG sites. It used only integer arithmetic algorithm which makes it fast and computationally 

efficient than the sliding window methods. However, it has the disadvantage of low sensitivity. 

Recently, a new algorithm “CpG_MI” [24] was developed to take into account more variability 

of the test such as different locations of CpG dinucleotide among different CpG islands. With the 

growing availability of the experimental results of the DNA methylation, the prediction of DNA 

methylation based on machine learning approach is possible. More specifically speaking, 

“EpiGRAPH” [25] algorithm for prediction of DNA methylation was trained by the wet-lab 

experiments data to predict the methylation probability of another stretch of DNA sequence. 

 

2.2.2 DNA methylation and genetic variants 

 

Recently, DNA methylation was suggested to be determined by the local DNA sequence. In one 

genetic manipulation study, 10 promoters with different endogenous DNA methylation patterns 

were inserted into one uniform DNA sequence shown to be epigenetically inert [26]. However, 

after insertion, most of these 10 promoters recapitulate their endogenous DNA methylation 

patterns, indicating a deterministic role of DNA sequence for the control of DNA methylation. 
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Meantime, a number of evidence has been accumulated in terms of the regulation of DNA 

methylation by the single nucleotide polymorphisms (SNPs) [27-33]. For example, the C allele 

of a SNP located within the promoter region of matrix metalloproteinase 1 (MMP1) was shown 

to have significantly higher DNA methylation status than the corresponding T allele [27]. Also, 

the G allele of one SNP located within the potassium-chloride co-transporter 3 (KCC3, SLC12A6) 

was found to be methylated at the adjacent C nucleotide [28].  

 

Later, systematic analyses of the whole human genome have identified a wide array of such 

genetic variants having regulatory effects on DNA methylation patterns, indicating that the 

genetic regulations on DNA methylation are prevalent across the whole genome. For instance, a 

genomic survey using methylation-sensitive SNP analysis (MSNP) showed that 16 SNP-tagged 

loci were confirmed to have allele-specific DNA methylation (ASM) events [33]. Also, in the 

brain samples, approximately 10% of the CpG sites included in the analysis were found to be 

affected by the genotypes of the SNPs located in cis-position, while 0.1% of the analyzed CpG 

sites were regulated by the genotypes of the SNPs in the trans-position [30]. Furthermore, it was 

suggested by studies with 16 human pluripotent and adult cell lines that approximately one out of 

three (23% to 37%) heterozygous SNPs in the human genome may regulate DNA methylation 

patterns [29], and a big proportion of the observed loci with ASM events (38% to 88%) is 

dependent on the allele status of CpG related SNPs (CGSs), a type of SNPs with one allele to 

disrupt and the other allele to create CpG dinucleotides [29]. Finally, the effect of genetic 

variants outweighed the influence of imprinting on DNA methylation because it was shown that 

the number of methylation loci affected by genetic variants were much more than those loci 

influenced by the gender of parent of origin [31].  
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2.2.3 DNA methylation and genetic functions 

 

DNA methylations have different genetic functions mostly depending on genetic locations. For 

example, DNA methylations within the promoter regions are more likely to regulate gene 

transcription [34, 35]; while, DNA methylations within the gene body tend to modify the 

alternative promoters and splicing events [36-40].  

 

2.2.3.1 DNA methylation within promoter regions and gene transcription 

 

The negative correlation between DNA methylation and gene transcription is striking and 

common to most genetic regions across the whole genome with rare exceptions [35, 41]. The 

first experiment indicating the transcription-regulatory effects  of DNA methylation was 

conducted with restriction enzymes with different sensitivity to methylation at genetic locus of β-

globin genes across different tissues of chicken [42]. Restriction enzyme HpaII (CCGG) cannot 

cut the sequences with internal 5-methylated-cytosine, while enzyme MspI (CCGG) can cleave 

the same DNA sequence regardless of their methylation status, so the treatment with both 

enzymes provide a sensitive tool to annotate the methylation status of DNA sequence of CCGG. 

By utilizing the differential cleavage of both enzymes HpaII and MspI, the CCGG sequence near 

the ends of the β-globin gene seem to be completely unmethylated in the cells expressing or have 

expressed the gene, including adult reticulocytes and erythrocytes; while the CCGG sequence 

were at least partially methylated in those cells not expressing the β-globin gene, such as oviduct, 

brain and embryonic red blood cells. Since the first indication, a large body of evidence has been 

accumulated to verify the inverse correlation between DNA methylation and gene transcription 
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for most genes, including but not limited to house-keeping genes [43], genes located on the 

inactive X chromosome [44-46], imprinted genes [33, 47], tumor suppressor genes or oncogenes 

[48-50], cellular differentiation and development related genes [51-54], metabolic genes [55-59], 

and inflammation related genes [60-64]. However, under rare circumstances, DNA methylation 

was shown to have a positive correlation with gene expressions [65-69]. Most of such 

transcriptional regulation effects were related to DNA methylations within the promoter regions 

[34] by direct blocking the binding of transcriptional activators or indirect recruitment of methyl-

binding proteins and co-repressor complexes to facilitate the formation of heterochromatin in a 

cooperative way [70].  

 

2.2.3.2 DNA methylation within gene bodies and alternative promoter and splicing events 

 

Besides promoter regions, DNA methylations are also found with CpG sites located within gene 

bodies [38, 71-73], indicating their potential genetic functions other than gene transcriptions. By 

comparing differential DNA methylation patterns on a genome-wide scale across different 

tissues (brain, heart, liver, and testis) and different developmental stages (15 day embryo, new 

born, 12 week adult) of mice, approximately 16% of the identified tissue differential methylation 

regions (T-DMR) or developmental stage differential methylation regions (DS-DMR) were 

located within intragenic regions [73]. Also, it was found that the majority of methylated CpG 

sites were located within gene bodies, indicating their possible more important genetic functions 

regarding DNA methylations [38, 71, 72, 74]. For example, according to analysis with human 

normal tissues (whole blood, monocyte, granulocyte, skeletal muscle, spleen, and brain), 15.4% 

CpG islands located within the gene bodies were found to be methylated, which is higher than 
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the proportion of methylated CpG islands within 5’ promoter region (7.8%) and the whole 

genetic region (10.6%) [72]. With samples of human brain tissues, Maunakea [38] generated 

high-resolution methylome maps with dense coverage of 24.7 million of the 28 million CpG sites 

across the whole genome. They found that 34% of all intragenic CpG islands were methylated, 

whereas only 2% of the CpG islands located within the 5’ promoter regions were methylated, so 

they concluded that “DNA methylation may serve a broader role in intragenic compared to 5’ 

promoter CpG islands in the human brain”. Again, the altered DNA methylation in the immune 

system were shown to occur predominantly at CpG islands within gene bodies based on the 

analysis with both mouse cells within hematopoietic lineage [71] and human B cells [74].  

 

The methylations within gene bodies may be related to alternative promoters [38] and alternative 

splicing events [36, 37, 39, 40]. According to the high-resolution and dense coverage methylome 

maps of human brain tissues, differentially methylated intragenic CpG islands have features of 

promoters, and novel transcripts have been found to be initiated from the identified differentially 

methylated and evolutionarily conserved intragenic promoters, indicating that intragenic 

methylation functions to regulate cell context-specific alternative promoters in gene bodies [38]. 

With a computational analysis of human chromosome 6, 20, and 22 based on datasets from the 

Human Epigenome Project (HEP) and the Human Genome Project (HGP), hypermethylated CpG 

sites were found to be prevalent in alternatively spliced sites, and the frequency of methylation 

increases in loci harboring multiple putative exonic splicing enhancers (ESEs) [40]. According to 

the analysis of data from RNA-seq experiments and methylome data with single nucleotide 

resolution of human cell lines, DNA methylation was found to be enriched in included 

alternatively spliced exons (ASEs), and inhibition of DNA methylation leaded to aberrant 
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splicing of ASEs. Further, they found that the alternative splicing may be because of the 

alternative definitions of exons via recruitment of methylated CpG site binding protein 2 

(MeCP2) to the methylated CpG sites [36]. Another potential mechanism for the regulation of 

DNA methylation on alternative splicing events may be the fact that DNA methylation patterns 

affect chromatin structure [37]. Finally, a DNA methylation related protein, CCCTC-binding 

factor (CTCF), was shown to promote alternative splicing events on a genome-wide scale, 

providing potential links between DNA methylation and alternative splicing events [39].  

 

2.3 DNA methylation and environmental factors 

 

2.3.1 DNA methylation and aging 

 

DNA methylation was indicated to be affected by aging process because of its intimate 

relationship with development. DNA methylation patterns change during each stage of 

development [75]. Before implantation, almost all DNA methylations were erased except for 

those imprinting regions. During implantation, the entire genome gets methylated except for the 

CpG islands. After implantation, pluripotency genes are de novo methylated and tissue-specific 

genes are demethylated in the cell types for their expression.  

 

The correlations between aging and DNA methylation were also suggested by the in vitro studies. 

For example, compared to the immortal cell lines, normal diploid fibroblasts were found to have 

a dramatic decrease in their 5-methylcytosine contents during their growth in culture [76]. 

Furthermore, the observation that the decrease rate in mouse primary diploid fibroblasts were 
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faster than hamsters and humans and the fact that mouse has the shortest lifespan compared to 

hamsters and humans suggested that the rate of loss of 5-methylcytosine is positively correlated 

with growth potential. Also, the treatment of human diploid fibroblasts with DNA methylation 

inhibitors, azacytidine (5-aza-CR) and azadeoxycytidine (5-aza-CdR), were shown to inhibits the 

initial cellular growth [77].  

 

Recently, a series of epidemiological analysis have indicated the potential relationships between 

aging and DNA methylation patterns. A cross-sectional study with monozygotic twins [78] 

found that younger twins have significantly lower levels of 5-methylated cytosines than older 

twins, and that the variance of DNA methylation of the older twins was significantly greater than 

that of the younger twins. The observed differences in DNA methylation was consistent with the 

findings with gene expression by showing that the 50-year-old twins had dramatically different 

expression profiles while the 3-year-old twins had almost identical ones. The observed 

discordance of DNA methylation with age was consistent across different tissues within the 

analysis, including lymphocytes, epithelial mouth cells, intra-abdominal fat, and skeletal muscle 

biopsies. Later, another study with 34 male monozygotic twins with age ranging from 21 to 55 

year-old identified 88 sites located within or near 80 genes of which DNA methylation patterns 

were significantly correlated with age [79]. Three genes from that list of 80 genes were further 

validated and replicated with the analysis of their correlations with age in a population-based 

sample of 31 males and 29 females with age ranging from 18 to 70 years old, which are Edar 

associated death domain (EDARADD), target of myb1 (chicken)-like 1 (TOM1L1), and neuronal 

pentraxin II (NPTX2). Interestingly, all of these three genes have been reported to be associated 

with a wide array of age-related phenotypes, such as wound healing [80], Parkinson disease [81], 
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cancers [82, 83], and loss of teeth, hair, and sweat glands [84]. Also, a longitudinal study found 

that DNA methylation differs by age because methylation patterns of candidate genetic loci, such 

as the dopamine receptor 4 gene (DRD4), the serotonin transporter gene (SERT/SLC6A4), and 

the X-linked monoamine oxidase A gene (MAOA), were shown to change during the period 

when these children grew from 5 years to 10 years old.  

 

Finally, changes in DNA methylation patterns have been reported to be associated with a series 

of age-related diseases. For instance, an extensive body of evidence has suggested that a global 

hypomethylation and gene specific promoter hypermethylation were associated with different 

types of cancer. It was found that the number of a subpopulation of cells in human colonic 

mucosa increase with age, and the promoter of oestrogen receptor (ER) gene in this 

subpopulation of cells becomes hypermethylated. And this age-related hypermethylation of ER 

was found in all cells in colorectal tumors examined [85]. Also, age-dependent methylation of 

estrogen receptor alpha (ESR1) was shown to be associated with prostate cancer [86]. The 

hypermethylation of several tumor suppressor genes have been suggested as the biomarkers of 

lung cancer [87]. Alzheimer’s disease (AD), a demonstrated age-related disease, was found to be 

correlated with DNA methylation of CpG sites located near or within the genetic loci reported to 

harbor genetic susceptible risk variants for AD [88]. Compared to the normal retinas, retinas of 

patients with age-related macular degeneration were found to have hypermethylation and gene 

repression of Glutathione S-transferase isoform mu1 (GSTM1) and mu5 (GSTM5) [89].  
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2.3.2 DNA methylation and fatty acids 

 

The connections between dietary fatty acids and DNA methylation were strongly indicated by 

the striking effects of fatty acids on gene expressions, one of the major genetic functions of DNA 

methylations as mentioned above. Fatty acids affect expressions of a wide array of genes by 

acting as the important ligands for transcription factors, such as peroxisome proliferator-

activated receptors (PPARs), the liver X receptors (LXRs), retinoid X receptor (RXR), 

hepatocyte nuclear factor 4 (HNF4), sterol regulatory element-binding proteins (SREBPs), 

nuclear factor kappa-light-chain enhancer of activated B cells (NF-ĸB), cyclooxygenase (COX), 

and lipoxygenase (LOX). PPARs and LXR are members of the nuclear hormone receptor 

superfamily of transcription factors, which bind to specific motifs within the promoters of genes 

as heterodimers with the RXR. There are three isoforms of PPARs, including PPARα, PPARβ, 

and PPARγ. In general, PPARs bind with both saturated and unsaturated fatty acids with a 

relatively more potent binding with N6 and N3 polyunsaturated fatty acids (PUFAs) and their 

derivatives to regulate expressions of genes that control lipid and glucose homeostasis and 

inflammation. Regarding LXRs, there are two family members, LXRα and LXRβ. As a sensor of 

cholesterol in the nucleus, LXRs can be activated by increased intracellular cholesterol 

concentrations. Also, the biding of long chain fatty acids to LXRs [90] was shown to regulate 

expressions of genes involved in sterol and fatty acid metabolism [91], lipogenesis [92-95], 

carbohydrate metabolism [96, 97]. HNF4α is an orphan member of the steroid hormone receptor 

superfamily and functions by binding with the activated (CoA) form of fatty acids to regulate 

expressions of genes participating in the lipid and lipoprotein metabolisms [98, 99] and glucose 

metabolism [100, 101]. SREBPs have three isoforms, which are SREBP-1a, SREBP-1c, and 

SREBP-2, and all of them are the transcription factors playing a critical role in controlling 
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synthesis of fatty acids, triglycerides, and cholesterol [102]. PUFAs were found to lower the 

mature form of the protein levels of SREBPs by raising cellular cholesterol levels, or by reducing 

SREBP mRNA stability and SREBP transcription, or by promoting degradation of SREBP 

protein [103-106]. COX and LOX function to convert N6 and N3 PUFAs into pro- and anti-

inflammatory signaling molecules to regulate activity of transcription factors of inflammation 

such as NF-ĸB [107].  

 

The effect of fatty acids on DNA methylation was also indirectly suggested by a study with mice 

heterozygous for disruption of cystathionine beta-synthase (Cbs+/-) [58], which could be induced 

to have hyperhomocysteinemia (HHcy), providing an indirect evidence because of the potential 

modifications on DNA methylation by homocysteine through its participating in the one-carbon 

metabolism. In that study, a dosage of HHcy (normal, mild, and moderate) was developed by 

treating the mice (Cbs+/+) with control diet (normal), treating the mice (Cbs+/+) with diet to 

induce HHcy (mild), and treating the mice (Cbs+/-) with diet to induce HHcy (moderate). The 

potential relationship between homocysteine and DNA methylation was supported by the 

significantly inverse correlation between total homocysteine levels and liver methylation 

capacity, measured by the ratio of S-adenosylmethionine (AdoMet) to S-adenosylhomocysteine 

(AdoHcy). Correspondingly, mice with moderate HHcy had higher methylation of candidate 

CpG sites within the promoter region of fatty acid desaturase 2 (Fads2) in liver, leading to lower 

gene expression of Fads2 and lower protein activity of δ(6)-desaturase (encoded by Fads2) in 

liver, compared to mice with mild and normal HHcy. Also, mice with moderate HHcy have 

lowest level of arachidonic acid (AA) and docosahexaenoic acid (DHA) in total liver than those 

mice with mild and normal HHcy.  
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Direct evidence for the link between fatty acids and DNA methylation were conducted with in 

vitro and in vivo studies. It was found that incubation of human skeletal muscle cells with 48 

hours treatment with free fatty acids, such as palmitate and oleate, can increase DNA 

methylation levels of the promoter region of peroxisome proliferator-activated receptor γ 

(PPARγ) coactivator-1 α (PGC-1α), leading to suppression of its gene expression [108]. Also, in 

vitro treatment of U937 leukemia cells with eicosapentaenoic acid (EPA) was found to decrease 

methylation of the promoter regions of a myeloid lineage-specific transcription factor 

CCAAT/enhancer-binding protein (C/EBPδ), a tumor suppressor gene, resulting in an increased 

gene expression [109]. One in vivo study with rats found that feeding a diet high in N3 PUFAs, 

mainly with EPA and DHA, could significantly decrease global DNA methylation levels [110]. 

 

A randomized control trial with high-fat overfeeding in young adults with low or normal birth 

weight confirm the potential relationship between fatty acids and DNA methylation. It was 

reported that having high-fat overfeeding (+50% calories) for five days increased DNA 

methylation in the promoter region of a metabolic gene, PGC-1α, measured in the skeletal 

muscle cells extracted from healthy young men with low birth weight [59]. The observed 

induction of DNA methylation in PGC-1α was found to be reversible because DNA methylation 

returned to its baseline level after the high-fat diets were withdrawn. Although DNA methylation 

of PGC-1α was not found to have significant correlation with its gene expression, high-fat 

challenge in the subjects with low birth weight were shown to induce peripheral insulin 

resistance and decrease gene expression of PGC-1α.  
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2.3.3 DNA methylation and other environmental factors 

 

Besides aging and dietary fatty acids, DNA methylation patterns are modifiable by several other 

environmental factors, including nutrition status, air pollution, weather, and smoking. 

Supplementations of methyl donors during gestational stage of mice was shown to have a dose-

response relationship with the methylation of viable yellow agouti (A
vy

) locus and the browness 

of coat color in the offspring [111]. Calorie restriction in utero was found to decrease the overall 

methylations and changes in the methylation patterns of imprinted loci in mice [112]. Similarly 

in humans, those subjects having experienced famine prenatally because of their in utero 

exposure to the Dutch Hunger Winter were shown to have less DNA methylation of the 

imprinted gene, insulin-like growth factor 2 (IGF2) [113, 114]. It was found that the  increased 

concentrations of ozone and components of fine article mass were associated with 

hypomethylation of tissue factor (F3), intercellular adhesion molecule 1 (ICAM1), and toll-like 

receptor 2 (TLR2), and hypermethylation of interferon gamma (IFNγ) and interleukin 6 (IL6) 

[115]. Increased exposures to air pollutants, such as nitrogen dioxide (NO2), particulate matter 

10 (PM10), PM2.5, and ozone, were found to decrease global DNA methylation in whole blood 

[116]. With a genome-wide scale analysis followed by an independent replication study, those 

individuals with smoking were suggested to have decreased level of DNA methylation of a 

single CpG site located within the coagulation factor II (thrombin) receptor-like 3 (F2RL3) [117]. 

Also, methylation of tumor suppressor genes, cyclin-dependent kinase inhibitor 2A (p16) and 

death-associated protein (DAP) kinase might lead to lung cancer [118]. Sun exposure was 

indicated to be associated with the phenotypic changes related with skin aging by their 

modifications of DNA methylation across the genome [119]. Finally, individuals with in utero 
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exposure to rainy season in rural Gambia were shown to increase methylation of genetic regions 

contributing to the dramatic and systemic inter-individual variations in epigenetic regulations 

[120].  

 

2.4 DNA methylation and CVD risk factors 

 

2.4.1 DNA methylation and inflammation 

 

Accumulating evidence have suggested that DNA methylation patterns were associated with 

inflammatory markers, such as interleukin 6 (IL6) [60, 61, 121-123], interleukin 1β (IL1β) [60], 

and interleukin 8 (IL8) [60], high sensitivity C-reactive protein (hsCRP) [124], and vascular cell 

adhesion molecule-1 (VCAM1) [125].  A case control study found that patients with Rheumatoid 

Arthritis have lower DNA methylation levels of a CpG site, which was located at -1099 bp to the 

transcription start site of IL6, measured in peripheral blood monuclear cells (PBMCs). In the 

macrophages from healthy control subjects, lower methylation of the previously identified CpG 

site was in line with the higher IL6 expression stimulated by lipopolysaccharide (LPS). 

Experiments with electrophoretic mobility shift assay (EMSA) provided potential mechanistic 

explanation for the observed associations by identifying the methylation-dependent affinity of 

protein-DNA interactions [61]. The in vitro treatment of 5-aza-2’-deoxycytidine was capable to 

activate IL6 expression in all six analyzed human pancreatic adenocarcinoma cell lines, 

indicating an important role of DNA methylation at IL6 genetic locus [126]. Also, the chromatin 

immune-precipitation (ChIP) assays with the same cell lines identified a potential response 

element to the binding of MeCP2, located from -666 to -426 bp to the transcription start sites, 

providing potentially mechanistic explanations for the DNA methylation of IL6 [126]. A cross-
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sectional study with blood leukocyte found that workers living in the industrial estate had the 

lowest methylation levels of the second intron of IL6, with rural and urban residents had the 

highest and intermediate levels [121]. Another cross-sectional study with white blood cells found 

that a prudent diet, characterized by a high intake of vegetables and fruits, was associated with 

DNA methylation levels of the promoter region of IL6 [122]. According to the analysis of DNA 

methylation patterns of IL6 in periodontal tissues, patients with periodontitis were found to have 

lower methylation and higher gene expression [123]. An in vitro study with cultured human lung 

cells showed that the DNA methylation levels of promoter regions of a panel of inflammation 

related genes (IL6, IL1β, and IL8) were higher in cancer cells than normal ones, and the higher 

methylations went along with the lower gene expressions [60]. A study with patients with 

pediatric obstructive sleep apnea found that DNA methylation of forkhead box P3 (FOXP3) had 

significantly positive correlations with serum levels of hsCRP [124]. A cross-sectional study 

with blood samples from 742 community-dwelling elderly individuals found that 

hypomethylation of repetitive element LINE-1 was associated with increased levels of serum 

VCAM1 [125]. Finally, a study with samples of peripheral blood leukocytes from 966 African 

American identified that DNA methylations of 257 CpG sites within 240 genes contribute to 

serum levels of CRP [127]. 

 

2.4.2 DNA methylation and dyslipidemia 

 

DNA methylation patterns have been shown to be related with dyslipidemia [128-131]. After 

stimulation with lipoprotein mixture (68.8 ug/ml VLDL, 32.1 ug/ml LDL, 91.1 ug/ml HDL), the 

global levels of 5-methylated cytosines within the differentiated human monocyte-macrophage 
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cell line THP-1 was significantly increased [128]. According to a genome-wide DNA 

methylation analysis with samples of CD4+ cells from 991 individuals of the Genetics of Lipid-

lowering Drugs and Diet Network (GOLDN) Study, four CpG sites located within the intron 1 of 

carnitine palmitoyltransferase 1 A (CPT1A) were found to be associated with fasting levels of 

VLDL cholesterol and triglyceride (TG). DNA methylation of the CpG site with top findings 

was further found to be associated with CPT1A expression. The observed association between 

DNA methylation, gene expression, and fasting TG was replicated in an independent population, 

Framingham Heart Study [130]. Also, a higher methylation pattern of the promoter region of 

ATP-binding cassette A1 (ABCA1) in samples of whole blood was found to be associated with a 

lower circulating HDL cholesterol and HDL2-phospholipid levels in 97 patients with familial 

hypercholesterolemia [131]. Similarly in patients with familial hypercholesterolemia, leukocyte 

DNA methylations of lipoprotein lipase (LPL) had positive correlations with HDL cholesterol 

and HDL particle size, whereas DNA methylations of cholesteryl ester transfer protein (CETP) 

had a negative association with LDL cholesterol in all the participants and negative associations 

with HDL cholesterol, HDL-TG levels, and HDL partical size [132]. Further, the methylations of 

LPL in visceral adipose tissue extracted from 30 men with severe obesity were found to have 

negative correlations with HDL cholesterol and gene expression of LPL [132]. The potential 

mechanism for the effects of lipoproteins on DNA methylation is unknown. The modifications of 

chromatin structure may account as one potential mechanism, because it was found that 

apolipoprotein AI (ApoA-I) can physically bind to a CG-rich oligonucleotide in vitro, leading to 

the remodeling of chromatin structure [129].  
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3. Conclusion: 

 

Cardiovascular disease (CVD) constitute as a major public health problem because of its leading 

role to the death rate in not only USA but also globally. Dyslipidemia and inflammation are two 

major risk factors for CVD. Meantime, a wide array of environmental factors have been 

identified to contribute to these two risk factors, including diet, physical activity, alcohol 

drinking, and smoking. However, the connections between environmental factors and 

phenotypes are not as straight-forwarded as what we have expected. Actually, there are many 

steps from environmental factors to the final phenotypes. For example, in 1990s, a substantial 

inter-individual variability in terms of lipid response to the same dietary intervention program 

has been identified although almost all the subjects started with the same levels of blood lipids. 

After approximately 10 years’ research, scientists suggested that genetic variants may be the 

underlying factor to explain the observed substantial inter-individual variability. Despite 

numerous evidence have been accumulated regarding gene-by-environment (G×E) interactions, 

the underlying mechanism is still unclear. Based on the established roles with both nature and 

nurture, DNA methylation, one epigenetic mechanisms, may account, at least in part, for the 

observed G×E interactions.  
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III. Central hypothesis 

 

The environmental factors (dietary fatty acids and age) have a genotype-dependent dose-

response relationship with DNA methylation patterns of the CpG sites within promoter regions 

of the candidate genes for CVD risk factors (dyslipidemia and inflammation) in humans (Figure 

1.1).  

 

IV. Specific aims: 

 

Specific aim #1: To explore the association between single nucleotide polymorphisms (SNPs) 

and DNA methylation patterns by genome-wide approach with integrated bioinformatics analysis. 

The working hypothesis is that SNPs could affect DNA methylation by either cis-regulation or 

disturbing formation of CpG dinucleotides. The approach used to test this hypothesis is an 

integrated bioinformatics analysis of publically available datasets on the genome-wide scale. We 

expect to find a significant associations between SNPs and DNA methylation patterns. 

 

Specific aim #2: To explore the role of DNA methylation plays in the observed gene-by-

environment (G×E) interactions by candidate gene approach with focus on APOE (sub-aim #2-a), 

IL6 (sub-aim #2-b), and blood lipids-related genetic loci (sub-aim #2-c). The working hypothesis 

is that DNA methylation may be the biomarkers of the effects of environmental factors on 

genetic loci. The approach used to test this hypothesis is the genetic association and interaction 

analysis with population-based cohorts, combined with the analysis of the relationship between 

DNA methylation and gene expression of candidate genetic loci across different cell lines based 
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on publically available datasets. We expect to see that DNA methylation may at least partially 

explain the observed G×E interactions by the consistent findings to suggest the reactions from 

dietary fatty acids / age to DNA methylation and then to gene expression and then to phenotypes.  

 

 

Figure 1.1 Central hypothesis. Arrow represents locus of interest. Open lollipops presents 

hypomethylated CpG sites and filled ones represent methylated sites. 
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2.1 Abstract: 

Background:  

DNA methylation occurs on CpG dinucleotides. Single nucleotide polymorphisms (SNPs) may 

affect DNA methylation by changing the formation of CpG dinucleotides. In this study, we 

defined those SNPs which could change the formation of CpG dinucleotides as “CpG related 

SNPs” (CGS). Each CGS has two types of alleles, the allele to create CpG dinucleotides (CGS-C) 

and the allele to disrupt CpG dinucleotides (CGS-D). 

 

Methods: 

We applied a genome-wide scale and integrated bioinformatics analysis to publicly available 

datasets of both genotypes (HapMap project) and methylation patterns in B lymphocyte cell line 

(ENCODE project) to explore the relationship between these CGSs and DNA methylation from 

three perspectives: (1) whether the genotype of a single CGS affects the DNA methylation of 

that locus; (2) whether two CGSs in high linkage disequilibrium (LD) tend to be with the same 

type of allele (create or disrupt the CpG); (3) whether the haplotype consisting of multiple CGSs 

in high LD is associated with DNA methylation pattern of that region. 

 

Results: 

Approximately 80% of CGS-Cs can be methylated. In addition, when two CGSs are in high LD, 

they tend to act as the same type of allele, which means that if the allele of one CGS is to create 

the CpG then the allele of another CGS in high LD tend to create the CpG also. This finding is 

highly consistent in both unrelated individuals and family members of HapMap CEU population. 

Finally, the haplotype of one LD block, consisting of multiple CGSs close to both CpG islands 

and promoter regions, is correlated with DNA methylation pattern according to both categorical 

and continuous analysis.  

 

Conclusion: 

CGSs which are close to CpG islands and promoters may affect DNA methylation pattern in the 

form of haplotype.  

 

Key words: 

Methylation, haplotype, SNP analysis/discovery, bioinformatics, genome scan. 
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2.2  Introduction: 

Many technological advances have facilitated greatly the cataloging of millions of single 

nucleotide polymorphisms (SNPs). In spite of these, an understanding of the functional 

implications of single base pair changes remains limited. For example, genome projects 

including the Human Genome Project, HapMap project [1], and 1000 Genomes project have 

sequenced approximately 6 giga-base pairs of DNA nucleotides to identify 15 million SNPs [2, 

3]. Accompanying the discovery of novel SNPs is growing recognition of associations between 

SNPs and human diseases, many through genome-wide association studies (GWAS). However, 

despite this vast growth in genome databases, mechanistic understanding of how SNPs alter 

phenotypes is largely unknown.  

    Recent findings have suggested that links between epigenetic status and genetic variants may 

underlie the functionality of SNPs. Of the major types of epigenetic processes [4], DNA 

methylation has been most frequently linked to human diseases including cardiovascular diseases 

[5], diabetes [6], obesity [7], dyslipidemia [8], and cancer [9]. Recently, extensive studies have 

identified the genetic contribution to DNA methylation. Genetic manipulation in mouse stem 

cells demonstrated that local sequences regulate DNA methylation in both a necessary and 

sufficient manner [10]. SNPs are commonly occurring and well-documented example of DNA 

sequence variation, and SNP regulation of DNA methylation is widespread in humans [11-16]. 

For example, 80% of the variation in DNA methylation can be predicted by overall genotype of 

40 sequence-dependent autosomal regions [15]. Additionally, sequence-based regulation of DNA 

methylation is flexible, occurring either in cis or in trans [11]. Further, methylation related SNPs 

have been shown to affect gene expression [11], alternative splicing [14], and binding by certain 

transcription factors [14, 17], all of which are potential mechanisms by which SNPs may alter 

phenotypes.  
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CpG related SNPs (CGSs) constitute a group of SNPs with a particular relationship to DNA 

methylation. By definition, CGSs referred to those SNPs which can change the formation of CpG 

dinucleotides, which has been established as the primary target site of DNA methylation. For 

example, studies with human differentiated cells found that 99.98% of the methylation occurs on 

CpG dinucleotides [18]. CGSs have been found to contribute a significant fraction (38% ~ 88%) 

of allele specific methylation regions in the human genome [13, 15]. Also, over 80% CGSs were 

shown to play a regulation role in DNA methylation [19].  

   However, almost all current research has focused on the effects on DNA methylation by a 

single SNP, rather than the combination of multiple SNPs within one region. With the growth of 

knowledge in genetics, the concept of region with multiple variants outweighs the concept of 

single variant in terms of functional significance. In addition, SNPs in close proximity tend to be 

in linkage disequilibrium (LD) because of their less chance for recombination compared to those 

SNPs far away from each other.  As nearby SNPs often are linked from the perspective of variant 

alleles, the methylation status of adjacent CpG sites also tends to be similar [13]. In this case, we 

hypothesize that CGSs affect DNA methylation patterns in the form of haplotype. 

    To test our hypothesis, we conducted a pilot study on genome-wide scale to explore the 

potential relationships between DNA methylation and CGSs in three perspectives: (1) whether 

the genotype of a CGS is correlated with the DNA methylation level of that CpG dinucleotides; 

(2) whether two CGSs in high LD tend to carry the same type of allele, either creating or 

disrupting the CpG site; (3) whether the haplotype consisting of multiple CGSs in high LD is 

associated with the DNA methylation pattern of that LD region. (Table 2.1).  
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2.3 Materials and Methods 

2.3.1 Definition of CGS, CGS-C and CGS-D: 

In this study, CGSs are defined as those SNPs which could change the formation of CpG 

dinucleotides. Each CGS has two types of alleles, which can either create (CGS-C) or disrupt 

(CGS-D) CpG dinucleotides. For example, for a SNP with adenosine/cytosine (A/C) allele 

substitution, if the nucleotide on the 3’ of this SNP is guanosine (G), then this SNP can be 

defined as CGS because the allele cytosine (C) of this SNP and the 3’ guanosine (G) can form a 

CpG dinucleotides site. In this case, allele cytosine (C) is the CGS-C allele that will create while 

allele adenosine (A) is the CGS-D allele that will disrupt CpG dinucleotides. 

   Considering the possibility of methylation when the CpG site was present, the expected 

probabilities of CGS-C allele and CGS-D allele were differently defined in this study, depending 

on the level of data available, on the level of allele or genotype. If the data were on the level of 

allele, the expected probabilities of each allele would be accurately estimated as 50% (or 1/2), 

assuming an equal mutation rate across all SNPs. However, if the data available were on the 

level of genotype, we defined the heterozygotes as CGS-C rather than CGS-D, because one allele 

of the CpG site has the potential to be methylated, which resulted in the over-estimation of the 

probability of CGS-C allele and under-estimation of the probability of CGS-D allele. By this 

definition, thus, there are 67% (or 2/3) CGSs that are with CGS-C allele and 33% (or 1/3) with 

CGS-D allele, assuming an equal mutation rate across all SNPs. Taken the above SNP with A/C 

allele substation as one example, individuals with genotype of CC or AC were grouped 

altogether into CGS-C allele, while those with genotype of AA were grouped into CGS-D allele. 
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2.3.2 Retrieval of CGSs: 

As a first step, all types of variants were downloaded from the SNP135 database from UCSC 

human genome browser [20]. Since our interest was limited to SNPs, we extracted just those 

variants with class defined as “single” and a difference between the starting and ending 

coordinates of 1. Furthermore, we excluded ambiguous SNPs which had multiple different 

coordinates in one database. Then, the bioinformatics tool Galaxy [21] was used to fetch human 

hg19 sequence data provided by the UCSC genome browser in order to retrieve one adjacent 

nucleotide on the 5’ and 3’ ends of each SNP. From this data set, all CGSs on the genome-wide 

scale were extracted. In addition, a subgroup of extracted CGSs were further determined, which 

are located within 3kb up- and down-stream of both the transcription start site (TSS) of 

annotated gene, identified by the NCBI Reference Sequence (RefSeq) project from “refGene” 

database (as of 02-02-2012) [22], and CpG islands from “cpgIslandExt” database [23] , both of 

which were downloaded from UCSC genome browser. An R script was created to implement all 

these procedures.  

 

2.3.3 Data sources for methylation, phased allele, and genotypes: 

Three sources of methylation data were used in this study. One provides the methylation values 

by a single nucleotide based on the method of reduced representation bisulfite sequencing 

(RRBS) [24], called Methyl-RRBS. The other two datasets, Methyl-seq and Methyl-450, provide 

the methylation levels for 50 nucleotides on average. Methyl-seq methodology combines DNA 

digestion by HpaII and MspI with the Illumina DNA sequencing platform [25]. Methyl-450 

measures DNA methylation by bisulfite conversion and then is assayed with methylated and 

unmethylated probes on Illumina Infinium Human Methylation 450 Bead Array platform. A 
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detailed description of the methodology can be found on the UCSC website. Within the above 

described data, one site in the Methyl-RRBS database equaled one nucleotide, while one site 

within the Methl-seq and Methyl-450 databases represented on average approximately 50 

nucleotides, which have been taken into consideration for the calculation of hypermethylated 

nucleotides for each respective region as described below. All three databases were downloaded 

from the Encyclopedia of DNA Elements (ENCODE) project [26] through the UCSC genome 

browser. According to UCSC genome browser criteria, hypermethylated sites are those 

with >=50% of reads showing methylation at the given position in the genome for Methyl-RRBS, 

a score of 1000 for Methyl-seq, or a score >=600 for Methyl-450. 

We downloaded genotype information for three individuals of European ancestry: GM12878, 

GM12891, and GM12892, whose genomes have been made publicly available via the 1000 

Genomes Project high-coverage pilot study [3]. These data were accessed from the UCSC 

genome browser. Genotype information for a fourth individual, NA06990, was downloaded from 

NCBI. In order to get the exact haplotype information, we downloaded phase III phased allele 

data (released in Feb. 2009) of Utah residents with Northern and Western European Ancestry 

(CEU) in HapMap project. Their corresponding genotype data were also downloaded, which 

were released in Aug. 2010 with release number 28. There were 113 individuals in the phased 

allele dataset, while 174 individuals were available in the unphased genotype dataset [1, 27].  

 

 

2.3.4 LD region development: 

Each CGS within 3 kb distance from TSS and CpG islands was defined as an index SNP. Proxy 

SNPs for each index SNP were obtained using SNAP software [28] with the following searching 
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parameters: (1) the SNP data set was the 1000 Genomes Pilot 1; (2) the population panel was 

CEU; (3) the r
2
 threshold was 1.0; and (4) the distance limit was 500 kb. Those CGS pairs with 

the same index CGS were grouped and the LD region (block) was defined as the region starting 

from the CGS at the most 5’ side and proceeding to the one on the most 3’ side. And duplicated 

LD regions were removed.  

 

2.3.5 Statistical analysis: 

Both data of phased allele and unphased genotype were used to test the haplotype defined by two 

highly linked CGSs: (1) both CGSs carry the alleles to create CpG dinucleotides, i.e. index CGS-

C with proxy CGS-C (CGS-Ci & CGS-Cp); (2) both CGSs carry the alleles to disrupt CpG 

dinucleotides, i.e. index CGS-D with proxy CGS-D (CGS-Di & CGS-Dp); (3) the index CGS 

carries the allele to create while the proxy CGS carries the allele to disrupt CpG dinucleotides 

(CGS-Ci & CGS-Dp); and (4) the index CGS carries the allele to disrupt while the proxy CGS 

carries the allele to create CpG dinucleotides (CGS-Di & CGS-Cp). One-way Chi-square 

analysis was applied to test whether the observed probabilities of these four haplotypes were 

different from their corresponding expected probabilities, all of which should be equaled to 25% 

(or 1/4) because the expected probabilities of CGS-C and CGS-D are both 50% (or 1/2), based 

on the assumption of independence. Considering the fact that gametic phase information was not 

available for DNA methylation data used by this study, and that there were limited amount of 

individuals with both phased allele data and DNA methylation to analyze the association 

between haplotype and DNA methylation, an indirect estimation of haplotype based on unphased 

genotype information was further studied. Heterozygotes were determined to be included in the 

analysis because of statistical power, and they were further categorized into the CGS-C group 
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not CGS-D group. In this case, the probability of CGS-C allele was over-estimated and their 

expected values were 67% (or 2/3), higher than the accurate estimation of 50% (or 1/2), while 

the probability of CGS-D allele was under-estimated with expected values of 33% (or 1/3), lower 

than the accurate estimation of 50% (or 1/2). And the corresponding expected probabilities were 

44.4% (or 4/9), 11.1% (or 1/9), 22.2% (or 2/9), and 22.2% (or 2/9) for haplotype CGS-Ci & 

CGS-Cp, CGS-Di & CGS-Dp, CGS-Ci & CGS-Dp, and CGS-Di & CGS-Cp, respectively. In 

order to further know to which haplotype two CGSs tend to belong, the observed probabilities of 

the haplotype when both CGSs are with the same type of allele was compared to the random 

probability assuming that two CGSs show no interdependence, which was 50% based on right 

estimation and 56% based on both over-estimation of CGS-C and under-estimation of CGS-D.  

    To conduct the association with DNA methylation in a given region, the haplotype of multiple 

CGSs, derived with genotype data, within one LD region was analyzed as both categorical and 

continuous variables. For the categorical analysis, LD regions were dichotomized into two 

groups based on the fact whether or not there were more than 50% CGSs with CGS-C allele. 

Analysis of variance (ANOVA) was used to test whether those LD regions with >50% CGS-Cs 

tend to have more hypermethylated nucleotides compared to those LD regions with <=50% 

CGS-Cs. In the continuous analysis, the exposure variable is the number of CGSs with CGS-C 

allele within one LD region. The dependent variable is the sum of the nucleotides with 

hypermethylation from Methyl-seq, Methyl-450, and Methyl-RRBS datasets within that LD 

region. Pearson correlation and linear regression were applied to analyze whether the haplotype 

of multiple CGSs, defined as the number of CGS-Cs, within one LD region was related to the 

number of hypermethylated nucleotides in that region. In order to reduce potential bias, an 

adjusted number of hypermethylated nucleotides and an adjusted number of CGSs in one LD 
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region were calculated by dividing the length of the LD region from these measurements, and 

then multiplied by 1Mb. Because the total number of CGSs and CpG sites with methylation 

measurements in one LD region was determined by the technological resolution of genotyping 

platform and methylation chip, these two parameters were further adjusted in the regression 

model. All data were analyzed using SAS (version 9.2 for Windows; SAS Institute, Inc. Cary, 

NC, USA). A two-tailed P-value of <0.05 was considered statistically significant. 

 

 

2.4 Results and discussion: 

2.4.1 Distribution of CGSs: 

There were 12,023,433 CGSs from a total 54,212,080 variants within the SNP135 dataset after 

excluding those polymorphisms which were not SNPs (6,091,064, typically insertions and 

deletions), those ambiguous variants (4,178,554, variants with different coordinates in the 

database), and those SNPs do not change CpG dinucleotides (31,919,029). Among these CGSs, 

602,700 were close to the TSS of annotated genes as identified by the NCBI RefSeq project and 

359,151 were also close to CpG islands.  

 

2.4.2 Genotype of single CGS and its methylation 

There were approximately 1000 sites across the human genome with both genotype data and 

methylation measurements at the level of the single nucleotide as assessed by the method of 

Methyl-RRBS (1184 in GM12878, 1076 in GM12891, 956 in GM12892, and 701 in NA06990) 

(Figure 2.1). The means of DNA methylation level for CGS-C sites were above 40% (43.94% in 

GM12878, 47.52% in GM12891, 46.52% in GM12892, and 51.68% in NA06990), while those 
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means were less than 3% for CGS-D sites (0.96% in GM12878, 2.33% in GM12891, 2.31% in 

GM12892, and 1.02% in NA06990). The variation of DNA methylation level for CGS-C sites 

was greater than those for CGS-D sites (35.29% vs. 8.47% in GM12878, 38.47% vs. 12.6% in 

GM12891, 37.44% vs. 10.87% in GM12892, and 37.05% vs. 6.48% in NA06990). Less than 10% 

of the CGS-D sites were methylated (7% in GM12878, 6% in GM12891, 10% in GM12892, and 

5% in NA06990). But the majority of CGS-C sites (approximately 80%) were with methylation 

level greater than 0 (82% in GM12878, 76% in GM12891, 79% in GM12892, and 85% in 

NA06990).  

    This observation is highly consistent with the findings that most DNA methylation occurs on 

CpG dinucleotides in humans [18]. Interestingly, our findings further indicate that methylation is 

prevalent when CpG dinucleotides were present. However, approximately 60% of CpG sites in 

Figure 2.1 were neither completely methylated nor completely unmethylated. This is in line with 

the widespread existence of allelic skewing of DNA methylation in the human genome, a 

phenomenon in which the allele-specific methylation is relatively subtle rather than clear-cut 

[11]. Also, 7.6% of CpG islands in polyclonal or monoclonal cell lines were found to be 

predominant with CpG dinucleotides with intermediate levels of methylation (25% ~ 75%) [29]. 

It has been hypothesized that the usual small effect sizes and failure of replications in genetic 

association studies were because of the existence of these CpG sites with intermediate 

methylation levels [11].  

 

2.4.3 Haplotype of two highly linked CGSs  

The phased allele data provided direct test for the haplotype of two highly linked CGSs. In most 

CEU individuals, the observed probabilities of four haplotypes were significantly different from 
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their expected ones with assumption of independency (P < 0.05) (Figure 2.2A). Furthermore,  

the probability of the condition when both CGSs with CGS-C allele or CGS-D allele is 

significantly higher than the random probability of 50% (P < 0.001) (Figure 2.2B). Figure 2.2 A 

and B showed the results of the analysis with transmitted allele and the analysis with 

untransmitted allele yielded similar results (data not shown). 

   Consistent to the results with phased allele data, tests with unphased genotype information also 

showed not only the significant differences between the observed and expected probabilities of 

four haplotypes (P < 0.05) (Figure 2.2C), but also a higher than expected probability of 

haplotypes of CGS-Ci & CGS-Cp and CGS-Di & CGS-Dp (P < 0.0001) (Figure 2.2D), although 

the corresponding expected probability was over-estimated from the original 50% up towards 

56%. Although the probability of CGS-C was over-estimated by genotype data, the similarity of 

the significant findings from unphased genotype data to those from phased allele data 

ameliorated the effect of the over-estimation and validated the usage of genotype information to 

derive haplotype structure.  

    Both tests indicate that two CGSs tend to contain the same type of allele (e.g., either both 

create or both disrupt the formation of CpG dinucleotides). The potential mechanism for the 

observed haplotype may be related to the similar selection pressure and mutation rate introduced 

by correlated DNA methylation levels among closely located CpG dinucleotides.  Methylated 

cytosines at CpG dinucleotides can be mutated to thymines (T) through deamination [30-33]. If 

the neighboring CpG dinucleotides were methylated, then the incidence of SNP significantly 

increased by ~50% within the region within 10bp of a CpG site [16]. Additionally, CpG sites 

closely located to each other tend to have similar methylation levels. The correlation coefficients 

(R
2
) for the methylation levels across 30% ~ 48% of the CpG sites were greater than 0.3 [13]. 
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Also, the methylation state of CpG sites located in proximal promoter regions were found to be 

highly correlated [34]. In this case, it is plausible for two highly linked CGSs to contain the same 

type of allele, either both will create or both will disrupt CpG dinucleotides. 

 

2.4.4 Haplotype of multiple CGSs and methylation 

According to categorical analysis (Figure 2.3), those LD regions with more than 50% CGS-Cs 

have more hypermethylated nucleotides than those regions with less than 50% CGS-Cs (P < 

0.05). This pattern is highly consistent across not only four individuals (GM12878, GM12891, 

GM12892, and NA06990) but also across three different methods to measure DNA methylation 

pattern (Methyl-seq, Methyl-450, and Methyl-RRBS).  

    Based on continuous analysis (Figure 2.4), there was a positive relationship between the 

adjusted number of CGS-Cs and the adjusted number of nucleotides with hypermethylation per 

1Mb region across the entire genome. The correlation coefficients range from 0.2 to 0.5 and all 

of these correlations are statistically significant (P < 0.0001) across four individuals (GM12878, 

GM12891, GM12892, and NA06990).  

    Two example LD regions for the association between haplotype of multiple highly linked 

CGSs and DNA methylation pattern within one LD region are depicted in Figure 2.5. The LD 

region with methylation-susceptible haplotype was shown on the left side of the figure, in which 

all four CGSs are CGS-Cs. In this region, about 1000 nucleotides have measurements for 

methylation and most of these nucleotides showed hypermethylation. In contrast, the right side 

of the figure shows the LD region with methylation-resistant haplotype, consisting of two CGS-

Ds and most nucleotides in this LD region exhibit a hypomethylation pattern.  
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    Our finding is consistent with previous studies showing that CpG density within the 

methylation-determining regions is one important factor for regulation of DNA methylation [10]. 

However, the direction of the effect of CpG density on methylation based on our observations is 

not the same as that previous study. Lienert, et al. found a significant negative correlation (r = -

0.49) between the hypermethylation level and the number of CpG sites within methylation-

determining regions of length less than 1 kb. In contrast, our study found that the more CpG sites 

introduced by CGS-Cs in one LD region, the greater the number of hypermethylated nucleotides. 

A lack of measurement of exact CpG density in our study may account for this discrepancy. All 

the observations in our study were based on those nucleotides determined by the chip for 

methylation and genotyping, so not all the CpG sites and CGSs within the region of interest were 

measured. In this case, although the adjustment by length of each LD region was taken into 

account, the exact value of CpG density is still unknown. In addition, differences in the length of 

region of interest may explain, in part, this conflict. The regions of interest in the previous study 

are fixed with size less than 1 kb, while the length of regions in our study was flexible depending 

on the distance that encompassed those highly linked CGSs, which spans from 100 bp to 1 Mb. 

Discrepancies may also be related to species differences, since the previous study was based on 

mice data and our findings were derived from humans. Nonetheless, the positive relationship 

between haplotype and DNA methylation is consistent with our previous finding that 80% of the 

CGSs can be methylated when these SNPs contain the allele to create CpG dinucleotides, 

indicating the susceptibility to methylation of CGSs. 
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2.4.5 Strength and limitation 

An important strength of this study is the replication not only across multiple individuals but also 

across different experimental methodologies. The consistency of the replication validates the 

findings of our study. Additionally, this study was performed on a genome-wide scale, providing 

a more systematic and comprehensive view of the whole genome. Finally, this study is based on 

publically available data sets, whose quality has been vetted by numerous groups conducting a 

myriad of other analyses. Although some experimental bias may remain, replication across 

different methodologies negates these biases to a significant degree.  

This study does have some limitations. All findings are from B lymphocytes, so the identified 

relationship between CGSs and DNA methylation might not be generalized to other tissue types. 

We are limited by a relatively small sample size of individuals for which both genotype and 

DNA methylation data were available. In addition, all DNA methylation datasets were derived 

from cell lines rather than primary cells, which are more directly applicable to any inferred 

mechanistic consequences and which indeed may have different methylation patterns than those 

observed here. Also, the methylation datasets available did not allow us to analyze the 

differences in gametic phases.  
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2.5 Conclusion remarks: 

To our knowledge, this is the first study to focus specifically on CpG-related SNPs (CGSs) and 

their relationship with DNA methylation through genome-wide scale and integrated 

bioinformatics analysis of publicly available datasets. Our study is one of the few to examine the 

hypothesis that CGSs are capable of altering the formation of CpG dinucleotides, the target site 

for DNA methylation. We found that approximately 80% of CGSs were methylated when they 

carry the allele to create CpG dinucleotides. In addition, when two CGSs are in high LD, they 

tend to act in a coordinate fashion, meaning that if the allele of one CGS creates the CpG site, 

then the allele of another CGS in high LD also tends to create another CpG site. This finding is 

highly consistent in all 113 individuals with phased allele data and 174 individuals with 

unphased genotype data of the HapMap CEU population. Finally, the haplotype of one LD block, 

consisting of multiple CGSs close to both CpG islands and promoter regions, is correlated with 

the DNA methylation patterns according to both categorical and continuous analyses, showing 

that the more CGS-C one LD block have, the more nucleotides will undergo hypermethylation.  

The impact of this study resides not only in providing a candidate functional mechanism to link 

SNPs and DNA methylation, but also in its potential contributions to personalized medicine that 

relies on knowledge of functional genomic regions. 
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Table 2.1   Hypotheses of study in Chapter 2 

N SNP DNA methylation of Hypothesis 

1 Single CGS
1
 Single nucleotide Genotype of single CGS affects DNA methylation status at that site. 

2 Two CGSs in high LD
2
 / CGSs in high LD tend to carry the same type of allele, i.e. CGS-Ci

3
 & 

CGS-Cp
4
 or CGS-Di

5
 & CGS-Dp

6
. 

3 Multiple CGSs in high LD thousands nucleotides Haplotype of multiple CGSs in high LD is associated with DNA 

methylation pattern of that LD region 

Abbreviation: 
1
CGS, CpG related SNP; 

2
LD, linkage disequilibrium;

 3
CGS-Ci, index CGS with the allele to create 

CpG dinucleotides; 
4
CGS-Cp, proxy CGS with the allele to create CpG dinucleotides; 

5
CGS-Di, index CGS with the 

allele to disrupt CpG dinucleotides; 
6
CGS-Dp, proxy CGS with the allele to disrupt CpG dinucleotides. 

 

  



 

57 
 

 

 

Figure 2.1 Methylation status of CGSs with different types of alleles. Histograms of methylation status for CGS-C sites (upper panel) and CGS-D sites (lower 

panel) in human blood lymphocyte cell lines. Data from GM12878 (A), GM12891 (B), GM12892 (C), NA06990 (D) were shown. The summary statistics of methylation status, including number of 

CpG sites, mean, standard deviation, and percentage of CpG sites with methylation level greater than 0 (P(x>0)), were presented on the right upper corner of each panel. Abbreviation: CGS, CpG related 

SNPs; CGS-C, CpG related SNP with the allele to create CpG dinucleotides; CGS-D, CpG related SNP with the allele to disrupt CpG dinucleotides; P(x>0), percentage of CpG sites with methylation 
level greater than 0.  
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Figure 2.2 Haplotype of two CGSs with high LD in HapMap CEU. Phased allele data (n=113) (panel A and B) and unphased genotype data (n=174) (panel C and 

D) were used to measure the haplotype of two linked CGSs. (A,C) Scatter plot of all P values (-log10) from Chi-square tests of the difference between the observed and expected probability of four 
haplotypes derived from CGS pairs in each HapMap CEU individual, shown as diamond (black for P < 0.05 and gray for P >= 0.05). (B,D) Histogram of the distribution of the probability of the 

haplotypes when both CGSs are with the same type of alleles, both with CGS-Cs or both with CGS-Ds. Vertical lines represent the expected probability, which was 50% for the estimation based on 

phased allele and 56% for the estimation based on unphased genotype. Abbreviation: CGS, CpG related SNP; LD, linkage disequilibrium; CEU, Utah residents with ancestry from northern and western 
Europe; CGS-C, CpG related SNP with the allele to create CpG dinucleotides; CGS-D, CpG related SNP with the allele to disrupt CpG dinucleotides; Exp, expected probability; CGS-Ci, index CGS-C; 

CGS-Cp, proxy CGS-C; CGS-Di, index CGS-D; CGS-Dp, proxy CGS-D. 
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Figure 2.3  Categorical analysis of association between CGS haplotype and DNA 

methylation. Adjusted mean number of hypermethylated nucleotides per 1Mb region were compared 

between those LD regions with >50% CGS-C (dark gray) and those with <= 50% CGS-C (light gray), 

with different techniques to measure DNA methylation: Methyl-seq (A), Metyl-450 (B), and Methyl-

RRBS (C). The model was adjusted for total number of proxy CGSs and total number of nucleotides with 

methylation measurement (
# 
P < 0.05 and * P < 0.01). Abbreviation: LD, linkage disequilibrium; CGS-C, 

CpG related SNP with the allele to create CpG dinucleotides. 
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Figure 2.4 Continuous Analysis of association between CGS haplotype and DNA methylation. Correlation between adjusted number 

of CGS-Cs and adjusted number of hypermethylated nucleotides per 1Mb in GM12878 (A), GM12891 (B), GM12892 (C), and NA06990 (D) are 

presented. A gray dot represents each LD region. The black line is the predicted correlation line adjusting for total number of proxy CGSs and 

total number of nucleotides with methylation measurement. R and P represent the Pearson correlation coefficient and the corresponding P value 

for its significance test, respectively. N represents the total number of LD regions in each individual. Abbreviation: CGS-C, CpG related SNP with 

the allele to create CpG dinucleotides; LD, linkage disequilibrium. 
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Figure 2.5  Examples of association between CGS haplotype and DNA methylation. Two examples of regions with methylation 

susceptible haplotype and methylation unsusceptible haplotype in GM12878, GM12891, GM12892, and NA06990 were displayed. On the left, the 

LD region occupies 56kb in length and contains four CGS-Cs (red dash), hypermethylation regions (red square) and hypomethylation regions 

(green square). On the right, the LD region occupies 43 kb in length and contains two CGS-Ds (green dash), hypermethylation regions (red square) 

and hypomethylation regions (green squre). Each square represents about 50 bp and each dash represents 1bp. Abbreviations: CGS, CpG related 

SNP; CGS-C, CpG related SNP with the allele to create CpG dinucleotides; CGS-D, CpG related SNP with the allele to disrupt CpG dinucleotides. 
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CHAPTER 3 

Age, SNPs, and DNA methylation at 

APOE locus 
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3.1 Abstract  

Although apolipoprotein E (APOE) variants are associated with age-related diseases, the 

underlying mechanism is unknown and DNA methylation may be a potential one. With 

methylation data, measured by Methyl450, from both 993 participants (age ranging from 18 to 

87 y) in the Genetics of Lipid Lowering Drugs and Diet Network study (GOLDN) study and 

from Encyclopedia of DNA Elements (ENCODE) consortium, we described the methylation 

pattern of 13 CpG sites within APOE locus, their correlations with gene expression across 

different cell types, and their relationships with 1) age, 2) plasma lipids, and 3) sequence variants. 

Based on methylation levels and regions of the gene, we categorized the 13 APOE CpG sites into 

three groups: Group 1 showed hypermethylation (>50%) and were located in the promoter region, 

Group 2 exhibited hypomethylation (<50%) and were located in the first two exons and introns, 

and Group 3 showed hypermethylation (>50%) and were located in the exon 4. Methylation at 

most CpG sites was negatively correlated with gene expression (minimum r = -0.66 with P = 

0.004). APOE methylation was significantly associated with age (minimum P = 2.06E-08) and 

plasma total cholesterol (minimum P = 0.005). Finally, APOE methylation patterns differed 

across APOE ε variants (minimum P = 7.44E-05) and the promoter variant rs405509 (minimum 

P = 0.03), which further showed a significant interaction with age (P = 0.03). These findings 

suggest that methylation may be a potential mechanistic explanation for APOE functions related 

to aging and call for further molecular mechanistic studies. 

Key words: apolipoprotein E, aging, DNA methylation, variants, epidemiology  
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3.2 Introduction: 

Apolipoprotein E (ApoE, encoded by the APOE gene), a protein involved in both exogenous and 

endogenous lipid metabolism [1], plays a significant role in the process of age-related diseases, 

including cardiovascular diseases, Alzheimer’s disease, and age-related macular disease [2]. 

While the vast majority of studies have investigated relationships between APOE sequence 

variants and age-related diseases [3-6], current studies on the relationship between aging and 

methylation pattern APOE are limited. One small-scale study suggested that the differences in 

APOE methylation between brains with late-onset Alzheimer’s disease and normal brains 

increase with age [7]. The effect of aging on APOE methylation is highly plausible based on the 

general link between DNA methylation and aging. For example, nearly every step of cellular 

development and differentiation involves DNA methylation changes [8]. DNA methylation has 

also been shown to be associated with age-related diseases [9]. Furthermore, methylation of 

APOE was shown to be functional since it is modified by environmental factors such as folate 

[10, 11], and correlates with clinical phenotypes in some [12] but not all studies [13].  

In light of the potential shared relationship with aging that appear to link APOE sequence 

variants and APOE methylation, along with the observation that sequence variants may actually 

alter methylation status [14], we propose that studying the two phenomenon in combination may 

be especially informative. Specifically, three functional single nucleotide polymorphisms (SNPs) 

may have the potential to modify DNA methylation at the APOE locus. The first SNP, rs405509, 

is located in the promoter region. The variant of this SNP was postulated to increase DNA 

methylation based on its demonstrated decreasing effect on gene transcription [15], the main 

functional effect of DNA methylation [16]. The other two SNPs are rs429358 and rs7412, which 

define the ε2/ε3/ε4 isoforms of ApoE and both are located within exon 4. These two SNPs are 

hypothesized to change DNA methylation as well, not only because they are located within the 

CpG island contained in the exon 4, but also because both are CpG related SNPs (eg. the 

cytosine allele forms a CpG dinucleotide while the thymine allele disrupts it). 

Using data from 933 participants of the Genetics of Lipid Lowering Drugs and Diet Network 

(GOLDN) study and data from Encyclopedia of DNA Elements (ENCODE) consortium, we 

described the methylation pattern of the 13 CpG sites within the APOE locus, which were 

available in Methyl450 array. With the data from ENCODE consortium, we analyzed the 

relationship between APOE methylation and gene expression across different cell types. Finally, 

we utilized GOLDN population to explore 1) whether age is associated with APOE methylation, 

2) whether the previously observed age-associated changes in APOE methylation can be further 

linked to changes in plasma lipids, the main functional phenotype of APOE, and 3) whether the 

effect of age on APOE methylation can be modulated by methylation-related genetic variants in 

APOE locus.  
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3.3 Methodology 

Study population 

The GOLDN study was designed to evaluate genetic factors that modulate plasma lipid 

responses to a diet intervention (consumption of a high-fat meal) and fenofibrate treatment. 

GOLDN participants are of European ancestry and were enrolled from the National Heart, Lung, 

and Blood Institute Family Heart Study [17]. This GOLDN analysis included 475 men and 518 

women (age ranged from 18 to 87y) who have baseline data for all required variables. The 

detailed design and methodology of GOLDN has been described [18]. Of relevance for this 

analysis, GOLDN required all subjects with a history of antilipemic drug use to be off all 

antilipemic medications at least 4 weeks prior to their study visit. The protocol for this study was 

approved by the Human Studies Committee of Institutional Review Board at the University of 

Minnesota, University of Utah, and Tufts University/New England Medical Center. Written 

informed consent was obtained from all participants. Fasting blood samples were collected to 

measure the lipid profile and detailed methodology was described previously [19]. Dietary intake 

was estimated using the diet history questionnaire [20, 21]. Physical activity was assessed by a 

questionnaire containing questions on the number of hours per day dedicated to different levels 

(heavy, slight, and sedentary) of activity [22]. 

 

Genotyping and methylation measurements 

Genomic DNA for sequence genotyping was extracted from blood samples using Gentra 

Puregene Blood Kits (Gentra Systems, Inc., Minneapolis, MN). Genotypes of rs429358 and 

rs7412 were obtained using TaqMan assays on a ABI 7900HT system (Applied Biosystems, 

Foster City, CA). APOE genotypes were then called on the basis of the guidelines of Hixson and 

Vernier [23]. The promoter SNP rs405509 was genotyped using the Affymetrix Genome-Wide 

Human SNP array 6.0 (Affymetrix, Santa Clara, CA) [24].  

Detailed methodology to measure DNA methylation was described previously [25]. CD4+ T-

cells for methylation measurement were extracted from baseline frozen buffy coat samples 

isolated from peripheral blood using positive selection (Invitrogen, Grand Island, NY) followed 

by sorting of subsets by flow cytometry (FACSAriaII, BD Biosciences, San Jose, CA). Cells 

were then lysed and DNA was extracted using QIAGEN DNAeasy kits (QIAGEN, Germantown, 

MD). DNA sample (500 ng) were treated with sodium bisulfite using Zymo EZ DNA 

methylation kit (Zymo Research Corporation, Irvine, CA). DNA methylation was measured by 

the Infinium Human Methylation 450K BeadChip (Illumina, San Diego, CA) through 

amplification, hybridization, and imaging steps. Intensity files were generated and analyzed with 

Illumina’s GenomeStudio, through which beta scores and “detection P-values” were generated. 

These beta scores represent the proportion of total signal from the methylation-specific probe or 

color channel. The “detection P-values” were defined as the probability that the total intensity 
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for a given probe falls within the background signal intensity. Those CpG probes with “detection 

P-values” greater than 0.01 and with more than 10% of samples that failed to yield adequate 

intensity were eliminated from further analysis. Those samples with more than 1.5% missing 

data points across ~470,000 autosomal CpGs were removed. After quality control, 13 CpG sites 

related to APOE remained. Start from the 5’, the first four CpG sites (cg14123992, cg04406254, 

cg01032398, cg26190885) were located within 1.5 kb before the transcription start site, the fifth 

CpG site (cg12049787) was within the first exon, the next three CpG sites (cg08955609, 

cg18768621, cg19514613) were within the first intron, the ninth CpG site (cg06750524) was 

within the second intron, and the last four CpG sites (cg16471933, cg05501958, cg18799241, 

cg21879725) were within the fourth exon.  

 

Gene expression and DNA methylation in ENCODE 

Methylation levels of all 13 CpG sites for 62 cell lines in ENCODE were downloaded (09-20-

2013) from UCSC genome browser HAIB Methyl450 track 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibMethyl450/) and 

represented by a heat map using R (www.r-project.org). The score of the methylation value 

associated with each CpG site was defined as the beta value multiplied by 1000, with the beta 

value in turn defined as the proportion of the intensity value from the methylated bead type from 

the sum of the intensity values from both methylated and unmethylated bead type plus 100.  

Gene expression data for APOE in 17 cell lines, which were also with methylation data, in 

ENCODE were downloaded (11-08-2013) from UCSC genome browser Duke Affymetrix Exon 

Array track 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeDukeAffyExon/). This 

track displayed exon array data which had been aggregated to the gene level for those probes that 

had been linked to genes. The expression score for each cell line represented a linearly scaled 

value for that particular cell type multiplied by 100, which ranged from 0 to 1000. 

 

Statistical methods 

According to ENCODE data, Pearson correlation analysis was conducted to test the correlations 

between methylation of each CpG site and gene expression of APOE.  In GOLDN, Mantel-

Haenszel χ
2
 tests and ANOVA tests were used to examine the trend of significance in 

characteristics of the study population, as categorical and continuous variables respectively, by 

age, categorized in quintiles. Generalized estimating equations (GEE) methods were used to test 

the association of methylation of each CpG site with age (continuous variable), blood lipids, and 

APOE genotypes, and the interaction between age (continuous variable) and selected variants. 

Each CpG site was included into the model separately. APOE ε variants were coded into three 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibMethyl450/
http://www.r-project.org/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeDukeAffyExon/
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categories, ε3/ε3, ε2 carriers (including ε2/ε2 and ε2/ε3), and ε4 carriers (including ε4/ε4 and 

ε3/ε4). Individuals with the ε2/ ε4 genotype (n=46) were excluded from the analysis to 

distinguish the distinct role of each variant. The primary analysis was adjusted for pedigree, sex, 

study center, and the first principal component of both cellular purity and population structure. 

To test the effect of other potential confounders, the secondary analysis was adjusted for 

smoking (never smoker past smoker, and current smoker), drinking (ever drink alcohol or not), 

total energy intake (kcal/d), physical activity (hours of total physical activity / d), vitamin B12 

intake (mcg/d), folate intake (mcg/d), hormone replacement therapy in women, and a history of 

use of antilipemic medication. Likelihood ratio tests were conducted to analyze whether the 

effects of age on plasma TC is partially through methylation of APOE. Each continuous variable 

was tested for normality, and log transformation were performed for those variables not 

following a normal distribution. Correlation analysis with data from ENCODE consortium and 

all data analysis with GOLDN population were analyzed using SAS (version 9.3 for Windows; 

SAS Institute, Inc. Cary, NC, USA). A two-tail P-value of <0.05 was considered statistically 

significant.  
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3.4 Results 

(1) Population characteristics 

Population characteristics were compared across age quintiles (Table 3.1). Gender distribution 

did not differ across age quintiles. Compared to the younger age quintiles, the older quintiles 

tended to contain fewer smokers (P < 0.05) but more with a past history of taking antilipemic 

medication (P < 0.0001). Also, those individuals in the older age quintiles tended to consume 

less total energy, vitamin B12 and folate (P < 0.005), and to have higher plasma triglycerides 

(TG), total cholesterol (TC), high-density lipoprotein cholesterol (HDL-c), and low-density 

lipoprotein cholesterol (LDL-c) (P < 0.0001) than those in the younger quintiles.  

 

(2) APOE methylation status in GOLDN and ENCODE data  

We examined the methylation status of 13 CpG sites in APOE using both GOLDN and 

ENCODE data. The genetic structure of APOE locus was described in Figure 3.1. Based on both 

the methylation levels in GOLDN and genetic locations, three groups of CpG sites can be 

distinguished. Specifically, the first three sites comprised a group (Group 1) that were both 

hypermethylated (all sites > 50% methylation) and located within the promoter region. The 

second group of CpG sites (Group 2, sites 4 to 9) were both hypomethylated (< 50%) and located 

in the 5’ part of the gene. The third group (Group 3, sites 10 to 13) were both hypermethylated 

(>50%) and located at the 3’ end of the gene. Examination of APOE methylation patterns using 

62 cell lines in ENCODE data confirms that these 13 CpG sites can be categorized into three 

groups based on their methylation status and genetic locations.   

 

(3) Correlation between methylation of each CpG site and APOE gene expression using 

ENCODE data: 

We extended our analyses in ENCODE by evaluating the relationship between CpG methylation 

and gene expression across 17 cell types with data available for both gene expression and 

methylation. Methylation of four CpG sites, distributed across three methylation groups 

identified above, was negatively correlated with gene expression (Table 3.2). Two CpG sites 

within Group 1, CpG 2 (cg04406254) and CpG 3 (cg01032398), showed the strongest 

correlation with gene expression, with Pearson correlation coefficients of -0.66 (P = 0.004) and -

0.62 (P = 0.008), respectively. In Group 2, CpG 7 (cg18768621) had a borderline significance (P 

= 0.05) with a coefficient of -0.48. In Group 3, CpG 12 (cg18799241) was negatively correlated 

with a coefficient of  -0.51 (P = 0.04).  
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(4) Age is associated with APOE methylation in GOLDN 

We next evaluated relationships between age and APOE methylation by examining methylation 

of the 13 CpG sites occurring within the three distinct methylation groups (Group 1, Group 2, 

Group 3), identified above.  Age was significantly associated with methylation of at least one 

CpG site in each group (Table 3.3).  For example, age was significantly negatively associated 

with DNA methylation values for all three CpG sites in Group 1, a hypermethylated group within 

promoter region (P < 0.0001), including CpG 1 (cg14123992), CpG 2 (cg04406254), and CpG 3 

(cg01032398). However, age was significantly positively associated with methylation of CpG 8 

(cg19514613) (P = 0.004), one CpG site in Group 2, a hypomethylated group within the 5’ part 

of the gene. For Group 3, which was hypermethylated and at the 3’ end of the gene, age was 

significantly negatively associated with methylation of CpG 10 (cg16471933) (P = 0.04). 

Significant relationships were not altered in secondary analyses adjusted for smoking, drinking, 

total energy intake, physical activity, vitamin B12 intake, folate intake, hormone replacement 

therapy in women, and history of antilipemic medication (data not shown).  

 

(5) Age-associated APOE methylation is associated with blood lipids in GOLDN 

We next examined whether the age-related APOE methylation previously observed is associated 

with plasma lipids (TC, LDL-C, TG and high density lipoprotein cholesterol (HDL-C)), the main 

phenotype of APOE (Table 3.4). Methylation of five CpG sites was significantly associated with 

plasma TC. Specifically, methylation of  CpG 7 (cg18768621) and CpG 9 (cg06750524) were 

positively associated with TC (P = 0.03). Methylation of CpG 10 (cg16471933), CpG 12 

(cg18799241), and CpG 13 (cg21879725) was negatively associated with TC (P < 0.05). For 

LDL-C, methylation of CpG 9 (cg06750524) had a significant positive association (P = 0.01).  

To examine whether the association of age on TC could be mediated in part through DNA 

methylation mechanisms, we conducted both indirect (Figure 3.2) and direct analysis (Table 

3.5). With respect to the indirect evidence, we plotted the beta values for age regressed on 

methylation of each CpG site (Figure 3.2A) and those for methylation of each CpG site 

regressed on TC (Figure 3.2B). The pattern of the association between age and methylation is 

moderately parallel to that between methylation and TC, which showed negative associations for 

CpG sites in both Group 1 and Group 3, both of which demonstrated hypermethylation, and a 

positive association for CpG sites in Group 2 which showed hypomethylation.  In terms of the 

direct evidence, we conducted a sensitivity analysis to compare the regression coefficients and 

statistical significance of TC on age with model without and with inclusion of methylation values 

of each CpG site (Table 3.5). Compared to the model without inclusion of each CpG site, the 

regression coefficients and statistical significance were reduced in the model that adjusted for the 

methylation levels of each CpG sites. According to the likelihood ratio tests, these two models 
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significantly differ with the inclusion of each following CpG site: CpG 4 (cg01032398) (P < 

0.0001), CpG 10 (cg16471933) (P = 0.04), and CpG 13 (cg21879725) (P = 0.03).  

 

(6) APOE variants are associated with methylation in GOLDN 

We next explored relationships between APOE methylation and APOE sequence variants. Five 

CpG sites were significantly associated with APOE ε variants (Table 3.6). For CpG 1 

(cg14123992) and CpG 3 (cg01032398), individuals with ε3/ε3 genotype have lowest 

methylation levels compared to the ε2 carriers and ε4 carriers (P = 0.03 and 0.003 respectively). 

However, the order for the betas of the associations with methylation level is ε2 carriers < ε3/ε3 

< ε4 carriers at CpG 8 (cg19514613) (P = 0.03), CpG 9 (cg06750524) (P = 7.44E-5), CpG 10 

(cg16471933) (P = 0.05), and CpG 13 (cg21879725) (P = 0.02).  

Promoter SNP rs405509 had significant association with methylation of CpG 2 (cg0406254) and 

CpG 10 (cg16471933) (P = 0.03) (Table 3.6). Homozygotes of the minor allele (AA) had the 

highest methylation levels while the homozygotes of major allele (CC) had the lowest, with the 

values for the heterozygotes in the middle.  

 

(7) APOE variant interacts with age to modulate methylation in GOLDN 

Finally, we examined genetic variants as a potential modulator of the effect of age on 

methylation of each CpG site at the APOE locus. Promoter SNP rs405509 significantly 

interacted with age to modulate methylation of CpG 3 (cg01032398) (P for interaction = 0.03) 

(Figure 3.3). For major allele carriers (CC and AC), methylation of CpG 3 significantly 

decreased with age (P for trend = 0.01 and 0.004 respectively). However, methylation was 

unaffected by age in homozygotes for the minor allele (AA) (P for trend = 0.97).  
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3.5 Discussion 

In the current study, we described the methylation patterns of the APOE locus and their 

correlations with gene expression, and observed associations between age, APOE methylation, 

and blood lipids, and an interaction between age and a methylation-associated promoter variant. 

This is the first study to explore APOE methylation at single nucleotide resolution with a 

population of a thousand individuals.  

Our finding that age is associated with APOE methylation is consistent with a previous study by 

Wang et.al. [7] showing that the differences in APOE methylation between individuals with and 

without Alzheimer’s disease increases with age. Other studies demonstrated that age affects 

global DNA methylation [26]. Compared to younger monozygous twins, older twins exhibited 

greater differences in DNA methylation. This may be a consequence of the fact that DNA 

methylation is modifiable by environmental factors [8], which accumulate gradually or change 

continuously with age. In our study, we expected APOE methylation to change with age because 

APOE is considered an age-related gene. This is based on the genetic associations between 

APOE variants and many age-related diseases, such as coronary heart disease [3], atherosclerosis 

[4], age-related macular degeneration (AMD) [5], and Alzheimer’s disease [6]. We also observed 

that the direction of the age-associated differences in methylation levels appeared to be 

associated with the existing degree of methylation. Specifically, we observed that greater age 

was associated with less methylation in hypermethylated regions and with greater methylation in 

hypomethylated regions. Finally, we observed moderate parallel patterns between the association 

of age with methylation and associations of methylation with blood lipids, which may imply 

biological connections between aging, methylation and lipid concentrations. 

Two hypothetical mechanisms for the observed differences in APOE methylation by APOE 

variants are differential allelic gene expression and changes in the DNA sequence that affect 

CpG site formation. With respect to the first mechanism, the minor allele of promoter SNP 

rs405509 (A) has been reported to exhibit lower gene transcription compared to the major allele 

(C) [15]. For the APOE ε variants, mRNA expression for ε3 allele was shown to be greater than 

that of ε4 [27]. Based on the established relationship between DNA methylation and reduced 

gene expression [16], our findings of higher methylation levels for carriers of the rs405509 A 

allele and ε4 allele in GOLDN are consistent with the lower expression reported in previous 

studies. The second potential mechanism by which genotype may alter methylation is based on 

the creation and disruption of CpG sites by nucleotide changes that determine the APOE ε 

variants. The two SNPs that constitute APOE ε variants are both CpG-related SNPs. That means 

that ε3 carriers have two CpG dinucleotides because both SNPs contain the C allele that is 

needed to create CpG dinucleotides, while ε2/ ε4 have one CpG dinucleotide because one SNP 

contains a C allele but the other SNP contains a T allele. Based on the recognition that most 

DNA methylation in the mammalian genome occurs on CpG dinucleotides [28], the density of 

CpG sites is likely to affect the local DNA methylation patterns.  
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In light of our findings that both age and APOE genotype were related to methylation, a logical 

next step was to examine whether these two factors might act in combination to alter methylation. 

Our observation that promoter SNP rs405509 significantly modified the association between age 

and promoter methylation is novel and plausible. Greater age was associated with less promoter 

methylation in the carriers of the major allele (CC and AC) but not in the homozygotes of the 

minor allele (AA), such that methylation of those in the AA group remained high regardless of 

age. This age-related allelic difference in methylation level may provide mechanistic support for 

previous findings linking the A allele of rs405509 to greater risk of myocardial infarction [29], 

premature coronary heart disease [30], and Alzheimer disease [31], but lower plasma 

concentration of ApoE [29].  

This study had a number of limitations. Based on the cross-sectional study design, we cannot 

establish causality. Further mechanistic studies are necessary. Also, the measurement of APOE 

methylation in circulating CD4+ T-cells may provide a limited perspective on a protein with 

multiple functions. However, the consistent methylation pattern across different types of cell 

lines observed with ENCODE data increases the generalizability of our findings.  

In summary, we characterized thirteen CpG sites at the APOE locus into three groups based on 

their genetic locations and methylation status in both GOLDN and ENCODE, and observed that 

most of these sites were negatively correlated with APOE gene expression based on ENCODE 

data. With a large population in GOLDN, we found that age was indeed associated with APOE 

methylation and linked those associations to changes in blood lipid profile. Furthermore, we 

observed that methylation-associated genetic variants of APOE modified the aging effect on 

methylation. Our findings are novel and consistent with the previous evidence from genetic 

studies, and may provide potential mechanistic explanations for aging related functions of APOE. 

  



 

73 
 

3.6 References: 

1. Mahley, R.W., Apolipoprotein E: cholesterol transport protein with expanding role in cell biology. 
Science, 1988. 240(4852): p. 622-30. 

2. Ang, L.S., et al., Apolipoprotein E, an important player in longevity and age-related diseases. Exp 
Gerontol, 2008. 43(7): p. 615-22. 

3. Ward, H., et al., APOE genotype, lipids, and coronary heart disease risk: a prospective population 
study. Arch Intern Med, 2009. 169(15): p. 1424-9. 

4. Davignon, J., R.E. Gregg, and C.F. Sing, Apolipoprotein E polymorphism and atherosclerosis. 
Arteriosclerosis, 1988. 8(1): p. 1-21. 

5. Klaver, C.C., et al., Genetic association of apolipoprotein E with age-related macular 
degeneration. Am J Hum Genet, 1998. 63(1): p. 200-6. 

6. Saunders, A.M., et al., Specificity, sensitivity, and predictive value of apolipoprotein-E genotyping 
for sporadic Alzheimer's disease. Lancet, 1996. 348(9020): p. 90-3. 

7. Wang, S.C., B. Oelze, and A. Schumacher, Age-specific epigenetic drift in late-onset Alzheimer's 
disease. PLoS One, 2008. 3(7): p. e2698. 

8. Cedar, H. and Y. Bergman, Programming of DNA methylation patterns. Annu Rev Biochem, 2012. 
81: p. 97-117. 

9. Johnson, A.A., et al., The role of DNA methylation in aging, rejuvenation, and age-related disease. 
Rejuvenation Res, 2012. 15(5): p. 483-94. 

10. Yi-Deng, J., et al., Folate and ApoE DNA methylation induced by homocysteine in human 
monocytes. DNA Cell Biol, 2007. 26(10): p. 737-44. 

11. Glier, M.B., T.J. Green, and A.M. Devlin, Methyl nutrients, DNA methylation, and cardiovascular 
disease. Mol Nutr Food Res, 2014. 58(1): p. 172-82. 

12. Turan, N., et al., DNA methylation differences at growth related genes correlate with birth 
weight: a molecular signature linked to developmental origins of adult disease? BMC Med 
Genomics, 2012. 5: p. 10. 

13. Sharma, P., et al., Detection of altered global DNA methylation in coronary artery disease 
patients. DNA Cell Biol, 2008. 27(7): p. 357-65. 

14. Zhi, D., et al., SNPs located at CpG sites modulate genome-epigenome interaction. Epigenetics, 
2013. 8(8): p. 802-6. 

15. Artiga, M.J., et al., Allelic polymorphisms in the transcriptional regulatory region of 
apolipoprotein E gene. FEBS Lett, 1998. 421(2): p. 105-8. 

16. Lindahl, T., DNA methylation and control of gene expression. Nature, 1981. 290(5805): p. 363-4. 
17. Higgins, M., et al., NHLBI Family Heart Study: objectives and design. Am J Epidemiol, 1996. 

143(12): p. 1219-28. 
18. Corella, D., et al., The -256T>C polymorphism in the apolipoprotein A-II gene promoter is 

associated with body mass index and food intake in the genetics of lipid lowering drugs and diet 
network study. Clin Chem, 2007. 53(6): p. 1144-52. 

19. Tsai, M.Y., et al., Effect of influenza vaccine on markers of inflammation and lipid profile. J Lab 
Clin Med, 2005. 145(6): p. 323-7. 

20. Thompson, F.E., et al., Cognitive research enhances accuracy of food frequency questionnaire 
reports: results of an experimental validation study. J Am Diet Assoc, 2002. 102(2): p. 212-25. 

21. Subar, A.F., et al., Comparative validation of the Block, Willett, and National Cancer Institute 
food frequency questionnaires : the Eating at America's Table Study. Am J Epidemiol, 2001. 
154(12): p. 1089-99. 

22. Corella, D., et al., A high intake of saturated fatty acids strengthens the association between the 
fat mass and obesity-associated gene and BMI. J Nutr, 2011. 141(12): p. 2219-25. 



 

74 
 

23. Hixson, J.E. and D.T. Vernier, Restriction isotyping of human apolipoprotein E by gene 
amplification and cleavage with HhaI. J Lipid Res, 1990. 31(3): p. 545-8. 

24. Aslibekyan, S., et al., A genome-wide association study of inflammatory biomarker changes in 
response to fenofibrate treatment in the Genetics of Lipid Lowering Drug and Diet Network. 
Pharmacogenet Genomics, 2012. 22(3): p. 191-7. 

25. Absher, D.M., et al., Genome-wide DNA methylation analysis of systemic lupus erythematosus 
reveals persistent hypomethylation of interferon genes and compositional changes to CD4+ T-cell 
populations. PLoS Genet, 2013. 9(8): p. e1003678. 

26. Fraga, M.F., et al., Epigenetic differences arise during the lifetime of monozygotic twins. Proc 
Natl Acad Sci U S A, 2005. 102(30): p. 10604-9. 

27. Lambert, J.C., et al., Distortion of allelic expression of apolipoprotein E in Alzheimer's disease. 
Hum Mol Genet, 1997. 6(12): p. 2151-4. 

28. Lister, R., et al., Human DNA methylomes at base resolution show widespread epigenomic 
differences. Nature, 2009. 462(7271): p. 315-22. 

29. Lambert, J.C., et al., Independent association of an APOE gene promoter polymorphism with 
increased risk of myocardial infarction and decreased APOE plasma concentrations-the ECTIM 
study. Hum Mol Genet, 2000. 9(1): p. 57-61. 

30. Viitanen, L., et al., Apolipoprotein E gene promoter (-219G/T) polymorphism is associated with 
premature coronary heart disease. J Mol Med (Berl), 2001. 79(12): p. 732-7. 

31. Lambert, J.C., et al., A new polymorphism in the APOE promoter associated with risk of 
developing Alzheimer's disease. Hum Mol Genet, 1998. 7(3): p. 533-40. 

 

 

  



 

75 
 

Table 3.1. Subject characteristics of GOLDN by age quintile
a
. 

 Variable Age quintiles   

Q1 Q2 Q3 Q4 Q5 P for 

trend
c
 

Age (y)
b
 24 (18-34) 40 (35-43) 47 (44-51) 57 (52-64) 71 (65-87)  

n 200 185 204 209 195  

men 88 (44) 98 (52.97) 96 (47.06) 99 (47.37) 94 (48.21) 0.64 

current smoker 17 (8.5) 18 (9.73) 21 (10.34) 13 (6.22) 4 (2.05) 0.004 

drinker 79 (39.5) 101 (54.59) 104 (50.98) 102 (48.8) 95 (48.72) 0.16 

Total energy intake (kcal/day) 2448 (1758) 2228 (1202) 2169 (981) 2037 (925) 1746 (809) <0.0001 

Vitamin B12 intake (mcg/day) 6.08 (4.41) 5.39 (3.33) 5.31 (3.03) 5.31 (2.93) 4.68 (3.29) 0.0001 

Folate intake (mcg/day) 466.95 

(315.66) 

411.93 

(237.7) 

398.22 

(171.36) 

398.46 

(187.07) 

362.91 

(166.53) 

<0.0001 

Have history to take antilipemic medication 0 (0) 2 (1.09) 1 (0.49) 14 (6.7) 20 (10.31) <0.0001 

TG (mg/dL) 100.11 (69.93) 128.06 

(95.93) 

133 (87.82) 148.96 (86.16) 150.69 (97.61) <0.0001 

TC (mg/dL) 162.04 (31.96) 186.39 

(31.66) 

192.21 (30.45) 198.71 (35.68) 189.66 (39.49) <0.0001 

HDL-c (mg/dL) 46.65 (11.27) 48.48 (13.09) 49.79 (13.48) 49.54 (14.88) 50.08 (14.67) 0.009 

LDL-c (mg/dL) 102.65 (28.02) 119.86 (28.6) 121.93 (27.49) 127.13 (30.11) 116.8 (31.92) <0.0001 
a
Data are means (standard deviation) or n (%);

 

b
Data are median age (minimum age – maximum age) within each quintile;

 

c
Mantel-Haenszel χ2 tests and ANOVA tests were applied to obtain P values for trend of categorical and continuous variables, irrespectively, 

according to the median of age in each quintile. 
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Table 3.2. Correlations between methylation of each CpG site with APOE gene expression in 

ENCODE 

 

CpG group* CpG # CpG Name Pearson Correlation Coefficients P 

Group 1 CpG 1 cg14123992 -0.45 0.07 

CpG 2 cg04406254 -0.66 0.004 

CpG 3 cg01032398 -0.62 0.008 

Group 2 CpG 4 cg26190885 -0.17 0.52 

CpG 5 cg12049787 -0.33 0.2 

CpG 6 cg08955609 -0.16 0.53 

CpG 7 cg18768621 -0.48 0.05 

CpG 8 cg19514613 -0.4 0.11 

CpG 9 cg06750524 -0.28 0.28 

Group 3 CpG 10 cg16471933 0.39 0.12 

CpG 11 cg05501958 0.21 0.43 

CpG 12 cg18799241 -0.51 0.04 

CpG 13 cg21879725 0.3 0.25 

*CpG groups were defined according to both the methylation level and region of the gene. 
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Table 3.3. Methylation of APOE CpG sites by age quintile in GOLDN
a 

 

CpG group CpG # CpG Name Age quintiles
b
 P

c
 

Q1 Q2 Q3 Q4 Q5 

24 (18-34) y 40 (35-43) y 47 (44-51) y 57 (52-64) y 71 (65-87) y 

n = 200 n = 185 n = 204 n = 209 n = 195 

Group 1 CpG 1 cg14123992 88.13 (0.45) 85.32 (0.83) 86.07 (0.61) 85.72 (0.42) 84.46 (0.62) 8.00E-05 

CpG 2 cg04406254 72.36 (0.24) 70.62 (0.35) 70.75 (0.33) 70.29 (0.34) 69.90 (0.27) 2.06E-08 

CpG 3 cg01032398 82.80 (0.18) 81.58 (0.45) 82.22 (0.22) 81.96 (0.23) 81.39 (0.23) 1.16E-04 

Group 2 CpG 4 cg26190885 9.17 (0.10) 9.30 (0.09) 9.32 (0.08) 9.44 (0.08) 9.33 (0.08) 0.11 

CpG 5 cg12049787 6.63 (0.24) 7.13 (0.42) 6.94 (0.35) 6.80 (0.19) 7.02 (0.23) 0.44 

CpG 6 cg08955609 3.79 (0.11) 5.38 (0.77) 4.83 (0.59) 4.69 (0.44) 4.69 (0.42) 0.19 

CpG 7 cg18768621 11.39 (0.86) 14.77 (1.23) 11.98 (0.81) 12.76 (1.12) 13.70 (1.10) 0.30 

CpG 8 cg19514613 13.13 (0.15) 13.21 (0.22) 13.40 (0.15) 13.92 (0.20) 13.61 (0.18) 0.004 

CpG 9 cg06750524 24.78 (0.25) 25.75 (0.51) 25.51 (0.42) 25.35 (0.35) 24.66 (0.27) 0.60 

Group 3 CpG 10 cg16471933 80.97 (0.35) 79.51 (0.49) 80.01 (0.50) 80.28 (0.37) 79.54 (0.39) 0.04 

CpG 11 cg05501958 96.29 (0.11) 95.17 (0.60) 95.41 (0.50) 95.65 (0.37) 95.98 (0.09) 0.62 

CpG 12 cg18799241 87.27 (0.87) 83.57 (1.27) 86.23 (0.86) 86.49 (1.08) 85.62 (1.08) 0.68 

CpG 13 cg21879725 84.22 (1.15) 80.46 (1.37) 83.64 (1.02) 86.74 (1.20) 82.12 (1.24) 0.62 
a
Data are means (standard error of the means) of DNA methylation percentages (%) adjusted for the covariates below; 

b
Median age (minimum age – maximum age) within each quintile were presented; 

c
P: P value for the association between age (quintile) and DNA methylation adjusting for pedigree, sex, center, and the first principle component of cellular 

purity and population structure. 
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Table 3.4. Associations between methylation of APOE CpG sites with lipids in GOLDN. 

 

CpG group CpG # CpG Name TC HDL-c LDL-c TG (log) 

beta
b
 sem

b
 P

c
 beta

b
 sem

b
 P

c
 beta

b
 sem

b
 P

c
 beta

a
 sem

a
 P

c
 

Group 1 CpG 1 cg14123992 -0.20 0.10 0.08 -0.09 0.05 0.14 -0.13 0.11 0.25 4.4E-04 0.002 0.84 

CpG 2 cg04406254 -0.26 0.20 0.24 -0.04 0.09 0.64 -0.18 0.19 0.38 -0.003 0.005 0.46 

CpG 3 cg01032398 0.09 0.25 0.70 -0.12 0.09 0.34 0.17 0.22 0.40 0.004 0.005 0.52 

Group 2 CpG 4 cg26190885 0.01 0.85 0.99 0.25 0.31 0.42 0.06 0.74 0.93 -9.5E-06 0.014 1.00 

CpG 5 cg12049787 0.33 0.22 0.14 0.15 0.12 0.25 0.23 0.22 0.32 -0.002 0.004 0.57 

CpG 6 cg08955609 0.12 0.14 0.43 0.03 0.04 0.48 0.15 0.14 0.33 -0.001 0.003 0.60 

CpG 7 cg18768621 0.17 0.07 0.03 -0.02 0.03 0.57 0.12 0.07 0.09 0.003 0.001 0.08 

CpG 8 cg19514613 -0.65 0.41 0.14 -0.17 0.17 0.31 -0.12 0.37 0.76 -0.007 0.008 0.33 

CpG 9 cg06750524 0.38 0.16 0.03 -0.02 0.06 0.73 0.47 0.15 0.01 0.001 0.003 0.64 

Group 3 CpG 10 cg16471933 -0.41 0.15 0.03 0.003 0.07 0.97 -0.19 0.13 0.18 -0.005 0.004 0.13 

CpG 11 cg05501958 -0.29 0.11 0.09 -0.04 0.05 0.40 -0.29 0.11 0.09 -1.1E-04 0.003 0.97 

CpG 12 cg18799241 -0.18 0.07 0.02 -0.01 0.03 0.79 -0.10 0.06 0.14 -0.002 0.001 0.20 

CpG 13 cg21879725 -0.18 0.06 0.005 0.005 0.02 0.85 -0.11 0.05 0.06 -0.002 0.001 0.06 
a
Beta and sem represent changes in log transformed TG (mg/dL) corresponding to 1% increase in DNA methylation; 

b
Beta and sem represent changes in lipids (mg/dL) corresponding to 1% increase in DNA methylation; 

c
P: P value for the association between DNA methylation (%) and lipids adjusting for pedigree, sex, center, and the first principal component of cellular 

purity and population structure. 

 

  



 

79 
 

Table3.5. Sensitivity analysis to determine whether the methylation level of each CpG site could 

be mediating factor between age and blood total cholesterol
a 

CpG 

group 

CpG # CpG Name Not include CpG site 

  

Include CpG site Likelihood 

Ratio Tests 

for two 

models 
Beta(SEM) P   Beta(SEM) P 

Group 1 CpG 1 cg14123992 0.574(0.08) 4.62454E-08  0.562(0.08) 6.4164E-08 0.56 

CpG 2 cg04406254 0.574(0.08) 4.62454E-08  0.563(0.08) 6.521E-08 0.59 

CpG 3 cg01032398 0.574(0.08) 4.62454E-08   0.576(0.08) 4.5111E-08 0.41 

Group 2 CpG 4 cg26190885 0.574(0.08) 4.62454E-08  0.568(0.08) 1.4086E-07 <0.0001 

CpG 5 cg12049787 0.574(0.08) 4.62454E-08  0.573(0.08) 5.0233E-08 0.3 

CpG 6 cg08955609 0.574(0.08) 4.62454E-08  0.573(0.08) 4.7008E-08 0.27 

CpG 7 cg18768621 0.574(0.08) 4.62454E-08  0.569(0.08) 4.9486E-08 0.15 

CpG 8 cg19514613 0.574(0.08) 4.62454E-08  0.583(0.08) 4.4032E-08 0.11 

CpG 9 cg06750524 0.574(0.08) 4.62454E-08   0.576(0.08) 3.7557E-08 0.13 

Group 3 CpG 10 cg16471933 0.574(0.08) 4.62454E-08  0.566(0.08) 5.8425E-08 0.04 

CpG 11 cg05501958 0.574(0.08) 4.62454E-08  0.574(0.08) 4.4807E-08 0.3 

CpG 12 cg18799241 0.574(0.08) 4.62454E-08  0.572(0.08) 4.882E-08 0.09 

CpG 13 cg21879725 0.574(0.08) 4.62454E-08   0.572(0.08) 4.877E-08 0.03 
a
Data are the regression coefficients (standard errors) of the association between age and plasma total cholesterol adjusted for 

pedigree, sex, center, and the first principal components of cellular purity and population structure. 
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Table 3.6. Methylation of APOE CpG sites by carriers of three different ε alleles in GOLDN
a 

 

CpG 

group 

CpG # CpG Name APOE rs405509   APOE ε variants 

CC AC AA P
b
  ε2 carriers ε3/ ε3 ε4 carriers P

b
 

n = 256 n = 500 n = 236     n = 99 n = 588 n = 257   

Group 1 CpG 1 cg14123992 85.87 (0.56) 86.19 (0.35) 85.52 (0.62) 0.66  86.84 (0.32) 85.70 (0.41) 86.14 (0.49) 0.03 

CpG 2 cg04406254 69.96 (0.37) 71.07 (0.18) 71.10 (0.26) 0.03  70.36 (0.34) 70.84 (0.20) 70.85 (0.30) 0.67 

CpG 3 cg01032398 81.80 (0.19) 81.98 (0.22) 82.23 (0.21) 0.51   82.07 (0.30) 81.78 (0.19) 82.43 (0.21) 0.003 

Group 2 CpG 4 cg26190885 9.22 (0.08) 9.34 (0.05) 9.35 (0.08) 0.48  9.28 (0.11) 9.38 (0.05) 9.23 (0.07) 0.31 

CpG 5 cg12049787 6.97 (0.30) 6.87 (0.18) 6.89 (0.28) 0.92  6.57 (0.12) 7.01 (0.18) 6.83 (0.28) 0.31 

CpG 6 cg08955609 5.11 (0.57) 4.61 (0.31) 4.31 (0.38) 0.59  4.00 (0.08) 4.80 (0.32) 4.69 (0.47) 0.10 

CpG 7 cg18768621 13.45 (0.99) 13.05 (0.60) 11.93 (0.74) 0.54  13.56 (1.87) 13.37 (0.60) 11.51 (0.59) 0.08 

CpG 8 cg19514613 13.20 (0.17) 13.52 (0.11) 13.61 (0.14) 0.19  13.17 (0.29) 13.37 (0.11) 13.72 (0.13) 0.03 

CpG 9 cg06750524 24.41 (0.38) 25.52 (0.21) 25.44 (0.26) 0.08   23.85 (0.29) 25.05 (0.19) 26.25 (0.33) 7.44E-05 

Group 3 CpG 10 cg16471933 79.53 (0.37) 80.02 (0.28) 80.78 (0.30) 0.03  79.07 (0.57) 80.07 (0.26) 80.46 (0.29) 0.05 

CpG 11 cg05501958 95.28 (0.49) 95.71 (0.24) 96.15 (0.10) 0.12  96.15 (0.11) 95.67 (0.24) 95.58 (0.38) 0.19 

CpG 12 cg18799241 85.34 (0.99) 85.69 (0.62) 86.84 (0.74) 0.51  85.15 (1.80) 85.45 (0.61) 87.06 (0.58) 0.08 

CpG 13 cg21879725 82.35 (1.12) 82.41 (0.72) 84.45 (0.82) 0.22  81.57 (2.16) 82.21 (0.72) 84.68 (0.66) 0.02 
a
Data are means (standard error of the means) of DNA methylation percentages (%) adjusted for the covariates below; 

b
P: P value for the association between carriers of different APOE ε isoforms and DNA methylation (%) adjusting for pedigree, sex, center, and the first principal 

components of cellular purity and population structure. 
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Figure 3.1 Gene structure and methylation pattern of APOE in GOLDN and ENCODE. The top panel shows the 

structure of APOE gene. The arrow represents the direction of the gene and filled rectangles represent exons. The panel in the middle shows the 

mean of DNA methylation (%) for each of the 13 CpG sites in GOLDN. The locations of these sites are corresponding to the gene structure in the 

top panel. The bottom panel is the heatmap of the methylation values of these 13 CpG sites in different cell lines according to ENCODE. The 

pink represent hypermethylation (>50%) and the green represent hypomethylation (<50%). Abbreviations: 5’UTR, 5’ untranslated region; TSS, 

transcription start site; CGI, CpG island.  
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Figure 3.2 Parallel patterns of the ApoE methylation changes with age and total cholesterol in GOLDN. 

Thirteen CpG sites are listed as x-axis and the y-axis are the betas of age on methylation (%) (A) and the betas of 

methylation on TC (mg/dL) (B). Black dot represent point estimate of beta for each CpG site from generalized linear 

models adjusting pedigree, gender, study center, and the first principal component of cellular purity and population 

structure. Lower and upper bars represent the lower and higher values of 95% confidence intervals for each beta. 

Red line is the fitted line for the pattern of all 13 CpG sites.  
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Figure 3.3 Interaction between rs405509 and age for methylation of CpG 3 (cg01032398) in GOLDN. 

Predicted methylation level of cg01032398 by genotype of rs405509 were plotted against age, adjusted for pedigree, 

gender, center, and the first principal component of cellular purity and population structure. P values indicate the 

statistical significance of the adjusted interaction term and adjusted regression coefficients in the regression line 

corresponding to three genotype groups of rs405509 (diamond for CC, square for AC, and triangle for AA).  
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Fatty acids, SNPs, and DNA 

methylation at IL6 locus 
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4.1 Abstract  

N3 polyunsaturated fatty acids (N3 PUFAs) ameliorate inflammation with regulations on 

interleukin-6 (IL6). However, the molecular mechanism for this regulation is unclear and DNA 

methylation may represent a potential one. Using both population data from the Genetics of 

Lipid Lowering Drugs and Diet Network study (GOLDN) and cell lines data from the 

Encyclopedia of DNA Elements (ENCODE) consortium, we explored the potential interplay 

among DNA methylation , single nucleotide polymorphisms (SNPs), and N3 PUFAs within the 

IL6 locus. Our findings suggest a CpG site (cg01770232) within IL6 may be a potentially 

functional methylation site based on its significant correlation with IL-6 plasma concentration in 

GOLDN (P = 0.03) and gene expression in ENCODE (R = 0.8, P = 0.0003). Erythrocyte level of 

total N3 PUFAs was associated with cg01770232 methylation (P = 0.007) and plasma IL-6 

concentration (P = 0.02). SNP rs2961298 was shown to have significant association with 

cg01770232 methylation (P = 2.55×10
-7

), as well as to modify the association between N3 

PUFAs and cg01770232 methylation (P for interaction = 0.02). Higher total N3 PUFAs was 

associated with lower cg01770232 methylation in the heterozygotes (P for interaction = 0.04) but 

not the homozygotes of SNP rs2961298 (P > 0.05). To conclude, N3 PUFAs may affect IL6 

through methylation of its potential functional site cg01770232 in the promoter region, and this 

effect may be further modified by IL6 SNP rs2961298. These findings may increase mechanistic 

understanding of the link between N3 PUFAs and IL6.  

 

Key words:  

n3 polyunsaturated fatty acids, interleukin-6, DNA methylation, SNPs, epidemiology  
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4.2 Introduction: 

The interleukin-6 (IL6) gene has been demonstrated to be regulated by DNA methylation, and 

increased understanding of IL6 methylation may be relevant to amelioration of diseases that are 

mediated by inflammation.[1-5] For example, methylation of the IL6 promoter region was found 

to be associated with inflammation-related diseases, such as rheumatoid arthritis,[1] chronic 

periodontitis,[3] and cancer.[4] In addition to its etiologic relevance in inflammatory processes, 

methylation of the promoter region was also found to affect gene expression of IL6.[1-4] The 

observed effect of IL6 methylation on its gene expression may be related to the presence of 

potential binding sites for the methyl-CpG-binding protein 2 (MeCP2), which are located from 

positions -666 to -426 relative to the transcription start site.[2] The functional relevance of IL6 

methylation sites is not limited to the promoter region; for example, methylation of the second 

intron of IL6 was shown to be correlated with a biomarker of DNA damage. [5]  

 

As evidence of the connections between IL-6 concentration, IL6 methylation, and human disease 

accumulates, research to identify environmental factors that alter IL6 methylation will be 

particularly informative. N3 polyunsaturated fatty acids (PUFAs) may represent an 

environmental factor that modifies IL6 methylation, based on their demonstrated amelioration of 

systematic inflammation through reduction of IL-6 concentration, of which the higher value 

exhibit deleterious effects.[6, 7] One cross-sectional study found that erythrocyte N3 PUFAs 

were negatively associated with plasma IL-6 concentration.[8] Randomized clinical trials 

showed reduction of plasma IL-6 concentration by N3 PUFA supplementation. For example, 

after a 12-week fish oil supplementation, IL-6 production by peripheral blood mononuclear cells 

was significantly decreased.[9] Supplementation with docosahexaenoic acid (DHA) for 13 weeks 

decreased the concentration of IL-6 by ~20%.[10] Also, supplementation with both 
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eicosapentaenoic acid (EPA) and DHA for 8 weeks was found to reduce not only the plasma 

concentration of IL-6 but also its gene expression in adipose tissue.[11]   

 

Adding to the complexity of environmental modulation of IL6 methylation is the role of genetic 

sequence variation. For example, single nucleotide polymorphisms (SNPs) were found to affect 

DNA methylation across the whole genome.[12] Moreover, IL6 SNPs were shown to interact 

with different environmental factors, including diet,[13] smoking,[14, 15] and social position to 

determine plasma IL-6 concentration.[16] This evidence demonstrates the modifying role of IL6 

sequence variants on the effect of environmental factors on plasma IL-6 concentration. Therefore, 

the objective of this study is to explore the relationship between N3 PUFAs, IL6 SNPs, and IL6 

methylation. 

 

To achieve this objective, we first explored potential functional methylation sites within the IL6 

locus based on DNA methylation-expression relationship in datasets from the Encyclopedia of 

DNA Elements (ENCODE) consortium, and the DNA methylation-protein relationship in data 

from participants of the Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) study. 

We further investigated the association between N3 PUFAs and methylation levels of the 

identified functional CpG site, and evaluated whether the observed associations could be further 

modified by IL6 SNPs in GOLDN participants.   
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4.3 Methodology: 

Study population: 

The GOLDN study, designed to evaluate genetic factors that modulate lipid responses to diet and 

fenofibrate treatment, recruited participants from the National Heart, Lung, and Blood Institute 

Family Heart Study.[17] The study design and methodology were described previously.[18] The 

protocol for this study was approved by the Human Studies Committee of Institutional Review 

Board at the University of Minnesota, University of Utah, and Tufts University/New England 

Medical Center. Written informed consent was obtained from all participants. Validated diet 

history questionnaire was applied to collect dietary intakes.[19] Total hours of physical activity 

were obtained by relevant questionnaire.[20]  

 

Biochemical measurements: 

Blood samples from each participant were collected, stored frozen at -70 degrees C, and 

analyzed at the same time to eliminate inter-assay variability. IL-6, interleukin-2 soluble receptor 

(IL2sR)-α, tumor necrosis factor (TNF)-α, and monocyte chemoattractant protein-1 (MCP-1) 

were measured using quantitative sandwich enzyme immunoassay techniques (ELISA kit assays, 

R&D System Inc., Minneapolis, MN) as described previously.[19] High-sensitivity C-reactive 

protein (hsCRP) was measured using a latex particle enhanced immunoturbidimetric assay 

(Kamiya Biomedical Company, Seattle, WA) as described previously.[21] Plasma adiponectin 

was measured using competitive RIA (Linco Research, St Charles, MO, USA) as described 

previously.[22] Fatty acids in the erythrocyte membranes were measured by a capillary Varian 

CP7420 100-m column with a Hewlett Packard 5890 gas chromatograph equipped with a 

HP6890A autosampler.[23] The measurements of fatty acids were reliable and have been 

validated against a diet history questionnaire.[24, 25]  
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Genotyping and DNA methylation 

IL6 is a gene with five exons (~5 kb) and located on chromosome 7 (Figure 4.1 A). 

Approximately 60 kb upstream of transcription start site of IL6 gene, there was a CpG island of 

598 bp in length. Since no known genes are located between the CpG island and IL-6 gene, the 

region of interest for this study, referred as IL6 locus, was defined as the region from 1 kb 

upstream of the CpG island to 1 kb downstream of the 3’ unstranslated region (UTR) of IL6 gene. 

Within the IL6 locus, there are 39 SNPs with measurements of genotypes. Two CpG sites, 

referred to as cg01770232 and cg26061582, were included into the analysis because they were 

located in the potential binding site for the MeCP2.[2]  

 

Genotypes for IL6 SNPs were obtained using the Affymetrix Genome-Wide Human SNP array 

6.0 (Affymetrix, Santa Clara, CA) with the genomic DNA extracted from blood samples using 

Gentra Puregene Blood Kits (Gentra Systems, Inc., Minneapolis, MN). 

 

CD4+ T-cells were obtained from frozen buffy coat samples isolated from peripheral blood using 

positive selection (Invitrogen, Grand Island, NY) followed by sorting of subsets by flow 

cytometry (FACSAriaII, BD Biosciences, San Jose, CA). Methylation of CpG sites within IL6 

locus was measured using Infinium Human Methylation 450K BeadChip (Illumina, San Diego, 

CA) [26] with 500 ng sodium bisulfite treated DNA (Zymo Research Corporation, Irvine, CA) 

extracted from CD4+ T-cells (QIAGEN, Germantown, MD). For each CpG site, a beta score and 

a detection p-value were generated through the analysis of the intensity files with Illumina’s 

GenomeStudio. The beta score represented the proportion of total signal from the methylation-

specific probe or color channel. The detection p-value was defined as the probability that the 

total intensity for a given probe falls within the background signal intensity. During quality 
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control, those CpG probes with detection p-values greater than 0.01 and with more than 10% of 

samples that failed to yield adequate intensity were eliminated, and those samples with more 

than 1.5% missing data points across ~470,000 autosomal CpGs were removed. The quality 

control procedures yielded 21 CpG sites within the IL6 locus, with two of them (cg01770232 and 

cg26061582) included into the analysis due to their location within the potential binding site for 

the MeCP2.[2]  

 

Gene expression and DNA methylation in ENCODE 

Methylation levels of CpG sites within the IL6 locus from all 17 cell lines, with available 

datasets of both methylation and gene expression, were downloaded (01-09-2014) from UCSC 

genome browser HAIB Methyl450 track 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibMethyl450/). The 

methylation status of a CpG site was assayed by single base-pair extension with a Cy3 or Cy5 

labeled nucleotide on oligo-beads specific for the methylated or unmethylated state. The 

methylation level of each CpG site was represented by a score, which was 1000 times the 

proportion of the intensity value from the methylated bead type of the sum of the intensity values 

from both methylated and unmethylated bead type plus 100. The range of the score was from 0 

to 1000.  

 

Gene expression data for IL6 in all 17 cell lines with available datasets of both methylation and 

gene expression in ENCODE were downloaded (01-09-2014) from UCSC genome browser 

Duke Affymetrix Exon Array track 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeDukeAffyExon/). All 

probes linked to IL6 gene were aggregated and the expression of IL6 was represented by a score, 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibMethyl450/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeDukeAffyExon/
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which was 100 times the signal value linearly scaled for that particular cell type and with ranges 

from 0 to 1000.  

 

Statistical methods: 

Pearson correlation analysis was conducted between methylation of the candidate CpG sites and 

IL6 gene expression across different cell lines in ENCODE. In GOLDN, the population for 

analysis consisted of 877 individuals (473 men and 404 women) after excluding those who 

reported taking hormone replacement therapies (n=113) because of their mixed effects on IL-

6.[27, 28] χ
2
 tests, ANOVA and ANCOVA analyses were conducted to examine the differences 

in population characteristics and potential confounding factors by erythrocyte total N3 PUFAs, 

categorized in quartiles. Generalized linear models were applied to test the main associations and 

interactions among the methylation levels of both CpG sites, plasma IL-6 concentration, 

genotypes of IL6 SNPs, and erythrocyte N3 PUFAs, including total, EPA, and DHA. The 

methylation levels of CpG sites were represented as quartiles for the exposure variables and as 

continuous variables for the outcome variable. The potential confounding factors adjusted by in 

this study included pedigree, principal components of cellular purity [29] and population 

structure, sex, study center, smoking, alcohol intake, total energy intake, physical activity, 

vitamin B12 intake, folate intake, acute inflammatory conditions (infection or fever), chronic 

diseases known to affect IL-6 such as abdominal obesity,[30] cardiovascular disease (CVD),[6, 7] 

diabetes,[31] and hypertension,[32] and other inflammatory markers known to affect IL-6, 

including hsCRP,[24] TNF-α,[33] MCP-1,[34] IL2sR-α,[24] and adiponectin.[35] Log 

transformation was performed for those variables not following a normal distribution. All data 

were analyzed using SAS (version 9.3 for Windows; SAS Institute, Inc. Cary, NC, USA). A two-

tail P-value of <0.05 was considered statistically significant.  
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4.4 Results: 

(1) Population characteristics 

Population characteristics were compared across quartiles of erythrocyte total N3 PUFAs 

(Table 4.1). Compared to the individuals in the quartiles with lower total N3 PUFAs, those in 

the quartiles with higher level tended to be older, consume less total energy intake, and have 

lower concentration of MCP-1 (P < 0.05). Also, the quartiles with higher levels of N3 PUFAs 

tended to contain less smokers, and more individuals with abdominal obesity than those with 

lower levels (P < 0.05). Finally, individuals in the quartiles with higher N3 PUFAs tended to 

have lower plasma IL-6 concentration (P = 0.02).  

 

(2) Cg01770232 may be the functional DNA methylation site within IL6 locus 

Methylation level of cg01770232 was positively correlated with IL6 gene expression across 

different cell lines in ENCODE (R = 0.75 and P = 0.0005) (Figure 4.1 B). In GOLDN, 

methylation level of cg01770232 was also positively associated with plasma IL-6 concentration 

(P = 0.03) (Figure 4.1 C). We did not find any significance for cg26061582 (data not shown).  

 

(3) N3 PUFAs are associated with both plasma IL-6 and methylation level of cg01770232 

In order to indirectly test whether the known effect of N3 PUFAs on IL-6 was mediated 

through changes in DNA methylation, we compared associations of N3 PUFAs with the 

methylation level of cg01770232, and also with plasma IL-6 concentration in GOLDN (Figure 

4.2). Total N3 PUFAs and DHA were significantly negatively associated with plasma IL-6 (P < 

0.05), while the negative correlation with EPA did not reach statistical significance. In parallel 

with the association pattern observed between total N3 PUFAs, EPA and DHA for the outcome 

of plasma IL-6 concentrations, the same fatty acids (total N3 PUFAs, EPA, and DHA) were also 

negatively associated with methylation level of cg01770232 (P < 0.05).  
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(4) Rs2961298 within IL6 locus is associated with methylation level of cg01770232 

Evidence for associations between all 39 SNPs within IL6 locus and the methylation level of 

cg01770232 is presented in Table 4.2 and Figure 4.3. Rs2961298, a SNP close to the CpG 

island upstream of IL6 gene, exhibited the most robust association with the methylation level of 

cg01770232 (P = 2.55×10
-7

).  

 

(5) Rs2961298 interacts with N3 PUFAs to modulate methylation level of cg01770232 

Because of the identified associations of both SNP rs2961298 and N3 PUFAs with the 

methylation level of cg01770232, the potential interactions between fatty acids and SNPs were 

further explored (Figure 4.4). Rs2961298 was shown to significantly modify the association of 

total N3 PUFAs (P for interaction = 0.02), EPA (P for interaction = 0.01), and DHA (P for 

interaction = 0.05) with the methylation level of cg01770232. Our findings suggest that N3 

PUFAs were associated with lower methylation level of cg01770232 in the rs2961298 

heterozygotes (AC) (P for trend = 0.04, 0.06, and 0.05 for total N3 PUFAs, EPA, and DHA, 

respectively), but not in the homozygotes (AA and CC).   
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4.5 Discussion 

In the current study, we identified a potentially functional CpG site within the IL6 locus and 

its association with N3 PUFAs in erythrocyte membrane, which was further modified by IL6 

SNPs. This is the first study to explore the effect of N3 PUFAs on IL6 methylation and relevant 

modification by genetic variants within a large population. Based on the fact that most N3 

PUFAs were taken from diet, our findings imply that IL6 genotype alters the relationship 

between diet and methylation for the outcome of plasma IL-6, and this mechanism may underlie 

previously reported IL6 genotype × diet interactions for health-related outcomes.  

 

Our finding that methylation of CpG site cg01770232 is associated with IL6 gene 

expression is consistent with previous studies, however, the direction of this effect in our study 

differs from that of earlier work.[1-4] In previous studies, methylation of IL6 gene promoter 

region has been shown to have a negative correlation with its gene expression,[1-4] and MeCP2 

was found to have gene silencing effect on IL6 [2] whereas we observed consistently positive 

associations between methylation and the outcomes of both gene expression and plasma IL-6 

concentration. Plausible explanations to account for the lack of agreement between the current 

findings and those of previous studies include differences in methylation measurement 

methodologies and the cell types used for methylation. Specifically, previous studies measured 

the methylation of hundreds of nucleotides within the promoter region, rather than the single 

nucleotide in our study. It is possible that the methylation of cg01770232 is negatively correlated 

with the methylation of the hundreds of promoter regions nucleotides investigated in earlier 

studies. Moreover, our decision to investigate cg01770232 is based on not only its location 

within the promoter region of IL6, but also on its specific position at -611 bp to the transcription 

start site, which is just within the region predicted to act as binding sites for the MeCP2. With 

respect to differences in cells types used for the current study vs. previous studies, the silencing 
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effect of MeCP2 in earlier studies was observed in cell types that did not actually express IL6, in 

which MeCP2 was bound to IL6. In contrast to these earlier studies, we used data generated from 

immune cells, in which IL6 is expressed and produced. We hypothesize that in the IL-6 

producing cell types, the methylated cg01770232 site does not bind with MeCP2 to inhibit IL6 

expression, but instead binds with other factors to induce expression. 

 

Potential mechanisms to account for the observed association between N3 PUFAs and IL6 

methylation may be related to absence of MeCP2 binding to the methylated CpG site in the IL6 

expressing cells, as mentioned above. This mechanistic possibility is supported by previous 

studies reporting protective effects of N3 PUFAs on Rett Syndrome, a neurodevelopmental 

disorder mainly caused by mutations in MECP2 gene.[36] In Rett Syndrome, sporadic mutations 

in MECP2 lead to dysfunctional binding of MeCP2 protein with methylated CpG sites.[37] N3 

PUFAs have been shown to partially rescue clinical symptoms of patients affected with Rett 

Syndrome,[38] by normalizing 16 disrupted acute phase proteins,[36] further indicating the anti-

inflammatory effects of N3 PUFAs. 

 

An important strength of the current study is that it provides evidence for potential 

mechanisms by which environmental factors (in this case diet) are modulating genotype-based 

variability in disease biomarkers. While previous studies reported the interactions between 

sequence variants and environmental factor that modulate plasma IL-6 concentration,[13-16] our 

work suggests that the modification effect of IL6 SNPs on the relationship between N3 PUFAs 

may occur through IL6 methylation. Specifically, SNP rs2961298 interacted significantly with 

total N3 PUFAs, EPA, and DHA to modulate methylation status of the identified functional CpG 

site, cg01770232. When evaluated in the same human population, N3 PUFAs were found to be 
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associated with methylation level of cg01770232 in a genotype-specific manner. The potential 

mechanism for the observed interactions may be related to different genetic structures. This is 

supported by our finding of the significant differences in methylation of cg01770232 by 

genotype of SNP rs2961298, indicating that different genotypes may lead to different genetic 

structures, which will be further differentially modified by the environmental factors, either 

methyl-donors or N3 PUFAs as suggested by our study.  

 

Our study was limited by its cross-sectional design, in which only association rather than 

causality can be established. Further longitudinal and intervention studies are needed in order to 

confirm and solidify these findings. Additionally, lack of replication and inability to directly 

assess relationships with gene expression in GOLDN should also be taken into consideration. 

 

In summary, we identified a potentially functional methylation site (cg01770232) within the 

IL6 locus, which is not only associated with IL6 gene expression according to ENCODE, but 

also associated with plasma IL-6 concentration in the GOLDN population. We further found that 

erythrocyte membrane levels of N3 PUFAs were associated with the methylation level of 

cg01770232 and the plasma concentration of IL-6. Moreover, the observed association between 

N3 PUFAs and methylation of cg01770232 was further modified by SNP rs2961298. Our 

findings may lead to novel mechanistic explanations of the link between N3 PUFAs and IL-6, 

and may also provide a basis for investigating genotype-altered methylation as a mediator of 

gene-diet interactions.  
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Table 4.1. Population characteristics of GOLDN 

Variable   Erythrocyte N3 PUFAs P 

    Q1 (n = 212) Q2 (n = 212) Q3 (n = 212) Q4 (n = 212)   

Erythrocyte 

N3 PUFAs  

Total N3 PUFAs (% total 

fatty acids)
a
 

4.65 5.25 5.96 7.08  

EPA (% total fatty acids)
b
 0.39 (0.09) 0.45 (0.10) 0.53 (0.12) 0.80 (0.48) <0.0001 

DHA (% total fatty acids)
b
 2.10 (0.30) 2.59 (0.30) 3.10 (0.32) 4.12 (0.73) <0.0001 

Demographi

cs 

Age (y)
b
 42 (14) 45 (16) 51 (15) 57 (15) <0.0001 

Men (n)
c
 124 (58) 119 (56) 107 (50) 109 (51) 0.29 

Lifestyle 

parameters 

Current smoker (n)
c
 27 (13) 24 (11) 12 (6) 4 (2) 0.0003 

Drinker (n)
c
 114 (54) 112 (53) 93 (44) 93 (44) 0.06 

Total energy intake 

(kcal/day)
b
 

2313.95 

(1496.83) 

2322.94 

(1325.29) 

2182.88 

(1193.17) 

1898.38 

(836.63) 

0.001 

Vitamin B12 Intake (mcg)
b
 5.62 (3.74) 5.84 (3.76) 5.56 (3.33) 5.18 (3.47) 0.29 

Folate Intake (mcg)
b
 423.61 (235.84) 416.24 (263.21) 421.98 (229.78) 404.28 

(198.43) 

0.83 

Disease 

status 

Infection or fever (n)
d
 2 (1) 5 (2) 4 (2) 2 (1) 0.45 

Abdominal obesity (n)
d
 86 (41) 121 (57) 114 (54) 108 (51) 0.01 

Hypertension (n)
d
 30 (14) 52 (25) 54 (26) 83 (39) 0.40 

Diabetes (n)
d
 8 (4) 19 (9) 12 (6) 25 (12) 0.98 

CVD (n)
d
 5 (2) 10 (5) 11 (5) 24 (11) 0.29 

Other 

inflammator

y markers 

IL6 (pg/ml)
e
 1.75 (1.13) 1.75 (1.12) 1.65 (1.11) 1.57 (1.12) 0.02 

hsCRP (mg/dl)
f
 0.11 (1.09) 0.15 (1.11) 0.11 (1.09) 0.12 (1.09) 0.69 

TNF-α (pg/ml)
f
 2.92 (1.03) 3.08 (1.03) 2.91 (1.03) 3.06 (1.05) 0.57 

MCP-1 (pg/ml)
f
 212.66 (1.02) 210.69 (1.03) 200.22 (1.02) 198.26 (1.02) 0.006 

Adiponectin (ng/ml)
f
 7762.81 (1.05) 6460.1 (1.05) 6930.59 (1.04) 6915.36 (1.05) 0.22 

IL2sR-α (pg/ml)
f
 1000.05 (1.03) 1020.96 (1.03) 959.39 (1.03) 964.97 (1.03) 0.16 

a
Data are medians of each quartile of total N3 PUFAs; 

b
Data are means (standard deviations) within each quartile of total N3 PUFAs and P values were obtained from ANOVA test; 

c
Data are n (%) within each quartile of total N3 PUFAs and P values were obtained from Chi-square test; 

d
Data are means (standard deviations) within each quartile of total N3 PUFAs and P values were obtained from logistic 

regression adjusting for the first four principal components for cellular purity and population structure, age, sex, center, smoking, 

alcohol intake, total energy intake, physical activity, intake of vitamin B12 and folate. 
e
Data are least squared adjusted means (standard errors) within each quartile of total N3 PUFAs and P values were obtained from 

ANCOVA test adjusting for the first four principal components for cellular purity and population structure, age, sex, center, 

pedigree, smoking, alcohol intake, total energy intake, physical activity, intake of vitamin B12 and folate, acute inflammatory 

conditions (infection or fever), chronic disease status (including abdominal obesity, CVD, diabetes, and hypertension), and other 

inflammatory markers (including hsCRP, TNFα, MCP-1, IL2sR-α, and adiponectin). 
f
Data are least square adjusted means (standard errors) within each quartile of total N3 PUFAs, P values were obtained from 

ANCOVA test adjusting for the first four principal components for cellular purity and population structure, age, sex, center, 

pedigree, smoking, alcohol intake, total energy intake, physical activity, intake of vitamin B12 and Folate. 
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Table 4.2. Genetic associations for methylation of cg01770232 in GOLDNa 

 
SNP Distance to TSSb (bp) Effect Allele Effect Allele Frequency Beta SEM P 

rs2905321 -62179 G 0.38 0.005 0.01 0.72 

rs2157958 -60059 C 0.31 0.02 0.01 0.11 
rs2961298 -58675 A 0.28 0.09 0.01 2.55E-07 

rs2961299 -58596 G 0.28 0.05 0.01 0.001 
rs2961300 -57982 C 0.28 0.04 0.01 0.003 

rs2905324 -57763 C 0.32 0.07 0.01 4.71E-06 

rs1006001 -57394 A 0.04 0.21 0.03 2.00E-05 

rs2961304 -53549 T 0.04 0.25 0.05 7.58E-05 
rs2961309 -43862 A 0.04 0.21 0.03 2.83E-05 

rs2961310 -42359 T 0.29 0.08 0.01 5.84E-07 
rs1548418 -41352 C 0.04 0.25 0.05 7.58E-05 

rs1476483 -35567 C 0.20 0.06 0.02 0.003 

rs2961312 -31812 T 0.04 0.20 0.03 2.68E-05 

rs4722166 -28004 G 0.36 -0.02 0.02 0.17 

rs4321884 -25307 A 0.47 -0.04 0.02 0.02 

rs7383869 -18576 T 0.49 0.005 0.02 0.82 
rs6946864 -14817 C 0.16 0.05 0.02 0.02 

rs6969502 -14340 T 0.16 0.05 0.02 0.02 

rs6952003 -14061 A 0.27 -0.04 0.02 0.03 
rs10156056 -12678 C 0.11 -0.05 0.02 0.01 

rs4719711 -11078 G 0.46 0.01 0.02 0.59 

rs1404008 -10766 A 0.46 0.01 0.02 0.59 

rs6963444 -9611 G 0.03 0.05 0.06 0.43 
rs6963591 -9496 T 0.45 0.01 0.02 0.69 

rs7801617 -8684 T 0.10 -0.01 0.03 0.58 

rs7805828 -8204 A 0.43 -0.003 0.02 0.90 
rs1880241 -7297 G 0.50 0.04 0.02 0.06 

rs1880242 -7159 C 0.46 0.01 0.02 0.59 
rs10499563 -6278 C 0.24 -0.03 0.02 0.06 

rs12700386 -3757 C 0.19 0.05 0.02 0.02 

rs2069824 -1534 G 0.07 -0.05 0.02 0.03 

rs2069827 -1310 T 0.08 -0.06 0.02 0.005 

rs1800795 -121 C 0.42 -0.03 0.02 0.08 

rs2069837 1261 G 0.09 -0.04 0.02 0.08 
rs2066992 1483 T 0.04 0.24 0.02 1.15E-05 

rs2069840 1806 G 0.35 0.005 0.02 0.84 

rs1548216 3007 C 0.03 0.06 0.06 0.31 
rs2069852 5494 T 0.03 0.24 0.03 1.83E-04 

rs7808204 8505 C 0.02 0.07 0.07 0.33 
a
Model adjusted for the first four principal components for celluar purity and population structure, age, sex, center, 

pedigree, smoking, alcohol intake, total energy intake, physical activity, intake of vitamin B12 and folate, acute 

inflammatory conditions (infection or fever), chronic diseases (including abdominal obesity, CVD, diabetes, and 

hypertension), other inflammatory markers (MCP-1, adiponectin, CRP, TNFα, and IL2sR-α). 
b
TSS represents transcription start site. 
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Figure 4.1. CpG site cg01770232 is the functional methylation site within the IL6 locus. Genomic structure of IL6 locus is shown in A, in which exons, CpG 

island, potential binding site for MeCP2, CpG sites, and SNPs are represented by black box, gray box, gray circle, black dots, and black bars, respectively. 

Pearson correlation between methylation level of cg01770232 and IL6 gene expression across different cell lines in ENCODE is displayed in B, in which each 

black dot represents one cell line and the gray line represents the corresponding regression line, and the correlation coefficient (R) and its corresponding P value 

are shown at the bottom right corner. Association of quartiles of methylation level of cg01770232 with plasma IL-6 concentration (geometric means ± 95% CI) 

in GOLDN is shown in C. P value was obtained from the general linear model adjusting for first four principal components for cellular purity and population 

structure, age, sex, center, pedigree, smoking, alcohol intake, total energy intake, physical activity, intake of vitamin B12 and folate, acute inflammatory 

conditions (infection or fever), chronic diseases (abdominal obesity, CVD, diabetes, and hypertension), other inflammatory markers (MCP-1, adiponectin, hsCRP, 

TNF-α, and IL2sR-α). 
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Figure 4.2 Associations of red blood cell N3 PUFAs with plasma IL-6 and DNA methylation level of cg01770232 in 

GOLDN. Predicted plasma concentration of IL-6 (log transformed) was plotted against total N3 PUFAs (A), EPA (C), and 

DHA (E), and predicted methylation level of cg01770232 was also plotted against total N3 PUFAs (B), EPA (D), and DHA 

(F). Betas and P values represent the regression coefficients and statistical significance, respectively, both of which were 

obtained from the general linear model adjusting for first four principal components for celluar purity and population 

structure, age, sex, center, pedigree, smoking, drinking, total energy intake, physical activity, intake of vitamin B12 and folate, 

acute inflammatory conditions (infection or fever), chronic disease status (including abdominal obesity, CVD, diabetes, and 

hypertension), other inflammatory markers (MCP-1, adiponectin, hsCRP, TNF-α, and IL2sR-α). 
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Figure 4.3 Genetic associations with the methylation level of cg01770232 in GOLDN within the IL6 locus. SNPs were 

plotted by position within IL6 locus against association with the methylation level of cg01770232 (-log10 P-value). 

Estimated recombination rates (from 1000 Genomes Pilot 1 CEU) are plotted in red gradients to reflect the local linkage 

disequilibrium structure. The SNPs surrounding the most significant SNP (rs2961298), represented by red diamonds, are 

plotted as color-coded squares to reflect their linkage disequilibrium with this SNP, which was estimated based on 1000 

Genomes Pilot 1 CEU database.  
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Figure 4.4 Interaction between N3 PUFAs and rs2961298 modulating the methylation level of cg01770232 in GOLDN. 
Predicted methylation levels of cg01770232 (log transformed) by genotype of rs2961298 were plotted against total N3 

PUFAs (A), EPA (B), and DHA (C), adjusted for first four principal components for cellular purity and population structure, 

age, sex, center, pedigree, smoking, alcohol intake, total energy intake, physical activity, intake of vitamin B12 and folate, 

acute inflammatory conditions (infection or fever), chronic disease status (including abdominal obesity, CVD, diabetes, and 

hypertension), other inflammatory markers (MCP-1, adiponectin, hsCRP, TNF-α, and IL2sR-α). P values indicate the 

statistical significance of the adjusted interaction term and adjusted regression coefficients (represented as betas) in the 

regression line corresponding to three genotype groups of rs2961298 (diamond for CC, square for AC, and triangle for AA).  
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for blood lipids – meta-analysis of 7 
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5.1 Abstract 

Background and aims 

DNA methylation may represent a portion of the underlying molecular mechanisms for gene-by-

environment interactions.  

Methods and results 

Based on multiple genome-wide association studies (GWAS) of blood lipids, 7 SNPs were selected for 

their predicted roles in the interplay among fatty acids, DNA methylation, and blood lipids, which were 

APOE rs405509, ABCA1 rs2246293, HMGCR rs3761740, APOA5 rs662799, PCSK9 rs2479409, 

HNF1A rs1169288, and HNF1A rs1169287. Association and interactions of these 7 SNPs and circulating 

fatty acids for the outcome of blood triglycerides (TG) and high density lipoprotein (HDL) cholesterol 

were meta-analyzed using data from 7 cohorts participating in the Cohorts for Heart and Aging Research 

in Genomic Epidemiology (CHARGE) consortium. Significant findings were later supported by 

methylation analysis in the Genetics of Lipid Lowering Drugs and Diet Network study (GOLDN) and 

gene expression analysis with data from the Encyclopedia of DNA Elements (ENCODE) consortium.  

Using a significance threshold corrected for multiple-testing, we observed significant associations 

between APOE rs405509 and TG (P = 2.44×10
-4

), and APOA5 rs662799 for both TG (P = 1.36×10
-18

) 

and HDL cholesterol (P = 2.49×10
-4

). We did not observe significant circulating fatty acids by SNP 

interactions. However, two loci with interactions with two different circulating fatty acids approached 

significance (P < 0.05) were supported by methylation analyses. For ABCA1 rs2246293 locus, the major 

G allele was associated with lower HDL (P = 0.015) and higher DNA methylation of cg14019050 (P = 

3.51×10
-18

). The interaction term of SNP×circulating eicosapentaenoic acid (EPA) for HDL was positive 

(β = 1.69, P = 0.006) and it was negative for the methylation of cg14019050 (β = -2.83, P = 0.007). 

Methylation of cg14019050 was negatively correlated with HDL in GOLDN (R = -0.12, P = 0.0002) 

and ABCA1 gene expression in ENCODE (R = -0.61, P = 0.009). At the APOE locus, the second locus 

showing nominally significant interaction between SNP and circulating fatty acids for a lipid outcome, 

the minor A allele of the promoter SNP rs405509 was associated with lower TG (P = 2×10
-4

) but higher 

DNA methylation of cg04406254 (P = 0.008). The interaction term of SNP×circulating α-linolenic acid 

(ALA) for TG was positive (β = 0.16, P = 0.01) but it was negative for methylation of cg04406254 (β = 

-13.25, P = 0.009). Methylation of cg04406254 was negatively correlated with TG in GOLDN (R = -

0.10, P = 0.002) and ABCA1 gene expression in ENCODE (R = -0.66, P = 0.004). 

Conclusion 

Methylation related SNPs may modify the effect of circulating fatty acids on blood lipids through their 

genotype-dependent associations with DNA methylation. These findings may increase mechanistic 

understanding of the interplay among environmental factors, genetic variants, epigenetic mechanisms, 

and phenotypes of interest.  

Key words: fatty acids, DNA methylation, genetic variants, blood lipids, epidemiology 
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5.2 Introduction 

There is accumulating evidence that the effects of dietary fatty acids on blood lipids depend on genotype. 

A modification effect of genetic variants on the relationship between dietary fatty acids and blood lipids 

was first suggested by the huge individual variability in  lipid response to dietary fat intervention 

programs [1]. Later, epidemiological studies provided evidence of gene-by-dietary fat interactions. In 

the Framingham study, the association between dietary total fat and high density lipoprotein (HDL) 

cholesterol was shown to be modified by the genetic variants in the hepatic lipase gene promoter regions 

(LIPC) [2]. More recently, the associations between dietary n6-polyunsaturated fatty acids (PUFAs) and 

blood triglycerides (TG) were found to be modified by the genotypes of promoter variant in 

apolipoprotein A5 gene (APOA5) [3]. Additionally, the interaction between APOE variants and fatty 

acids were shown to modulate blood lipids [4]. Despite the growing evidence for gene-by-fatty acids 

interactions, the underlying mechanisms for the observed interactions are unknown. 

DNA methylation may account as one potential mechanism to explain gene-fatty acids interactions. 

Compared to the other epigenetic mechanisms, DNA methylation has the most direct contact with 

nucleotides, and it has been suggested to act as the biomarker for the environmental factors. In cell 

systems, fatty acids have been shown to affect DNA methylation. Arachidonic acid (AA) and 

docosahexaenoic acid (DHA) were shown to affect methylation level of Fads2 in mice liver [5]. 

Palmitic acid (PA) and oleic acid (OA) were found to induce methylation of peroxisome proliferator-

activated receptor γ coactivator-1 α (PGC-1α) in human primary skeletal muscle cells [6]. 

Eicosapentaenoic acid (EPA) was shown to demethylate a CpG site of the tumor suppressor gene in 

human leukemia cell line [7]. In additional to a role of environmental factors, accumulating evidence 

suggests a relationship between DNA methylation and sequence variants. For instance, a genetic 

manipulation study demonstrated that methylation patterns are determined by the local sequence [8]. 

Genetic regulation of DNA methylation is widespread in humans [9-13]. Based on the evidence of the 

association of DNA methylation with both genetic variants and fatty acids, we propose our hypothesis 

that methylation related genetic variants modify the association of fatty acids with blood lipids through 

their genotype-dependent effects on DNA methylation.  

To test our hypothesis, we selected candidate SNPs based on their relationship to circulating fatty acids 

and blood lipids and their potential to undergo DNA methylation. Meta-analysis of the association and 

interactions between these SNPs and circulating fatty acids for the outcome of blood lipids were 

conducted with 7 cohorts in the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) consortium. Findings from the meta-analysis were further supported with methylation 

analysis in the Genetics of Lipid Lowering Drugs and Diet Network study (GOLDN) and gene 

expression analysis using data from Encyclopedia of DNA Elements (ENCODE) consortium. 
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5.3 Research design and methods 

Study design 

The flow chart in Figure 5.1 depicts the three stages of the study. In stage I, candidate SNPs were 

selected based on their predicted relationship with DNA methylation, and their known associations with 

circulating fatty acids and blood lipids. Then, in stage II, the association and interaction of the selected 

SNPs with fatty acids on blood lipid levels were examined in cohorts in the CHARGE consortium and 

the results were meta-analyzed. In the final stage III, findings from stage II were validated by the 

analysis of methylation data in GOLDN and gene expression published by the ENCODE consortium.  

 

Study populations 

The study included 7 cohorts in the Cohorts for Heart and Aging Research in Genomic Epidemiology 

(CHARGE) consortium: the Three-City Study (3C), the Atherosclerosis Risk in Communities (ARIC) 

Study, the Cardiovascular Health Study (CHS), the Genetics of Lipid Lowering Drugs and Diet Network 

(GOLDN), the Invecchiare in Chianti (InCHIANTI), the Multi-Ethnic Study of Atherosclerosis (MESA), 

and the Women’s Genome Health Study (WGHS). Details of these 7 cohorts are described in the 

Supplementary Methods. This study was approved by the institutional review board of each cohort and 

informed consent were received by all participants or their representatives. 

 

SNP selection and genotyping in each cohort 

Eight candidate SNPs were selected from the list of 323 SNPs located within 40 genes, which have been 

reported to be associated with blood lipids in genome-wide association studies (GWAS) [14-21]. We 

developed 8 inclusion criteria and 1 exclusion criteria to select the most relevant SNPs (Figure 5.1) with 

sufficient statistical power. SNPs meet the inclusion criteria (Criteria 1 to 8) will be at first included into 

the list, and then those SNPs meet the exclusion criteria (Criteria 9) will be excluded from the list. 

Criteria 1 required those SNPs to be located within the genes related with the phenotype of interest, 

blood lipids, by querying the gene name in PubMed-Gene database. Criteria 2 required those SNPs to be 

related to the exposure of interest, fatty acids, by searching the publications of the effects of fatty acids 

on the expression of genes containing the SNPs or the existence of the response element for fatty acids, 

peroxisome proliferator-activated receptors response elements (PPRE), within the genetic region of the 

genes covering the SNPs [22, 23]. Criteria 3 limited those SNPs with minor allele frequency greater than 

1% to reach enough statistical power. SNPs were predicted to be related to DNA methylation if they 

meet one of the criteria for DNA methylation: Criteria 4, close to CpG island [23-27], or Criteria 5, 

within promoter region defined as within 3kb distance from the transcription start site downloaded from 

UCSC genome browser (02-02-2012), or Criteria 6, within regions reported to have tissue differential 

DNA methylation status [28], or Criteria 7, within region reported to have tissue differential chromatin 

status [29]. Criteria 8 required those SNPs with functional evidence, which was set up as optional 

considering the fact that these evidence are continuously growing. The exclusion criteria (Criteria 9) will 

exclude those SNPs in high linkage disequilibrium (R
2
>0.8). As a result, 7 SNPs were included in the 
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analysis, which were APOE rs405509, ABCA1 rs2246293, HMGCR rs3761740, APOA5 rs662799, 

PCSK9 rs2479409, HNF1A rs1169288, and HNF1A rs1169287. Details of genotyping methods in each 

cohort were described in Supplementary Methods.  

 

Biochemical and circulating fatty acids measurements in each cohort. 

Blood TG and high density lipoprotein (HDL) cholesterol were measured by enzymatic assays with 

detailed description in Supplementary Methods. We will focus on 7 circulating fatty acids, which are 

palmitic acid (PA), oleic acid (OA), linoleic acid (LA), arachidonic acid (AA), alpha-linolenic acid 

(ALA), eicosapentaenoic acid (EPA), and docosahexaenoic acid (DHA). Circulating fatty acids were 

measured in total plasma (3C and InCHIANTI), plasma phospholipids (ARIC, CHS, MESA), or 

erythrocytes (GOLDN and WGHS) as described in Supplementary Methods. Fatty acids were 

expressed as the percentage of total fatty acids. Information for the covariates in this study was collected 

through relevant questionnaires or measurements as described in Supplementary Methods.  

 

DNA methylation in GOLDN 

Detailed methodology for assessment of DNA methylation was previously described [30]. Briefly, 

frozen buffy coat samples from peripheral blood were used to extract CD4+ T-cells, from which the 

methylation of CpG sites within the genes covering the SNPs in the current study was measured using 

Infinium Human Methylation 450K BeadChip (Illumina, San Diego, CA, USA). CD4+ T-cells have 

been reported to be the suitable tissue for fasting blood lipids in the GOLDN population [31]. The 

measurement of methylation was expressed as the proportion of total signal from the methylation-

specific probe or color channel, translated as the percentage of methylation. 

 

DNA methylation and gene expression in ENCODE 

Using databases of the ENCODE consortium, methylation and gene expression data across 17 cell lines 

were downloaded (06-20-2014) from the UCSC genome browser HAIB Methyl450 track 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibMethyl450/) and Duke 

Affymetrix Array track 

(http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeDukeAffyExon/), respectively. 

The methylation level of each CpG site was represented by a score, which was 1000 times the 

proportion of the intensity value from the methylated bead type from the sum of the intensity values 

from both methylated and unmethylated bead type plus 100. The range of the methylation score was 

from 0 to 1000. Gene expression value was represented by a score, which was 100 times the signal value 

linearly scaled for that particular cell type and with ranges from 0 to 1000. 

 

http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeHaibMethyl450/
http://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeDukeAffyExon/
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Statistical analyses 

In stage II, linear regression analysis was conducted by each cohort to generate regression coefficients (β) 

and robust standard errors of the association between the genotypes of the 7 SNPs and blood lipids (TG 

and HDL) and interaction between genotypes of 7 SNPs and circulating fatty acids (PA, OA, LA, AA, 

ALA, EPA, and DHA) for the outcome of blood lipids (TG and HDL).  

Meta-analysis was preformed based on the regression coefficients and robust standard errors provided 

by each cohort, using an inverse variance-weighted, fixed effects approach. Two independent analysts 

performed the meta-analysis with R software and METAL (http://umich.edu/csg/abecasis/Metal/). 

Bonferroni correction for multiple testing was derived based on the 7 SNPs and the 7 fatty acids 

evaluated for interaction, and the corrected significance was 0.001 (α=0.05/49).  

In stage III, for each SNP, we first conducted linear regression of the genotype and DNA methylation of 

the CpG sites located on the respective gene using data in the GOLDN study. Considering the dependent 

nature of methylation values of nearby CpG sites, a two-tailed P- value less than 0.05 was considered 

statistically significant. Then, using the methylation data on the CpG sites shown to have significant 

genetic associations, the interactions between SNPs and fatty acids with nominal significance with the 

outcome of blood lipids in stage II were further examined with the outcome of methylation. Finally, 

using the methylation data on the CpG sites with significance for both associations and interactions tests, 

Pearson correlation coefficients were obtained between methylation and blood lipids, and methylation 

and gene expression.  

To limit variation of genetic structures in populations of different ethnicities, non-whites were excluded 

from the study. All the analyses were adjusted by age (continuous: years), sex (binary), study center (if 

applicable), population structure or pedigree (if applicable), and principle components for cellular purity 

and population structure (for methylation analysis) in Model 1. To account for potential confounding by 

other environmental factors, Model 2 included further adjustments of body mass index (BMI), smoking 

status (categorical: never vs. past vs. current smokers), physical activity (continuous, based on study-

specific metric), alcohol intake (categorical: current vs. former/never), current estrogen therapy 

(categorical: yes/no), current lipid-lowering medication (categorical: yes/no), education level 

(categorical: cohort-specific metric) , total energy intake (continuous, kcal/day), dietary total fat intake 

(continuous, %total energy intake/day), glycemic load (if applicable) (continuous,g/day), dietary total 

folate intake (if applicable) (continuous, mcg/day), dietary VitB12 intake (if applicable) (continuous, 

mcg/day). Log transformation was performed for TG because it was not with normal distribution. SAS 

9.2 (SAS Institute, Inc. Cary, NC) and STAT were used to conduct the analysis. 

 

  

http://umich.edu/csg/abecasis/Metal/
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5.4 Results 

(1) Population characteristics 

Population characteristics, blood lipids, and circulating fatty acids are shown for each cohort in 

Table 5.1. Levels of blood lipids were similar across 7 cohorts. Fatty acids levels were similar 

among cohorts that measured fatty acids in the same compartment. 

(2) Stage II: Meta-analysis of genetic associations and interactions with circulating fatty acids for blood 

lipids in CHARGE consortium 

Meta-analysis of genetic associations with blood HDL and TG are shown in Table 5.2. The A allele 

of APOE rs405509 was associated with lower TG (P = 0.0002 and 0.00075 in Model 1 and Model 2, 

respectively). The G allele of APOA5 rs662799 was associated with lower HDL (P = 0.0002 and 

6.01×10
-6

 in Model 1 and Model 2, respectively) and higher TG (P = 1.36×10
-18

 and 7.07×10
-19

 in 

Model 1 and Model 2, respectively). The G allele of ABCA1 rs2246293 was nominally associated 

with lower HDL (P = 0.07 and 0.015 in Model 1 and Model 2, respectively).  

Meta-analysis of the genetic interactions with circulating fatty acids on blood HDL and TG are 

shown in Table 5.3. At the un-corrected threshold of significance (P < 0.05), three SNPs showed 

interactions. HNF1A rs1169287 interacted with circulating PA (P = 0.002 and 0.03 in Model 1 and 

Model 2, respectively) and ALA (P = 0.02 and 0.008 in Model 1 and Model 2 respectively) for the 

outcome of HDL. APOE rs405509 interacted with circulating ALA in the association with TG (P = 

0.05 and 0.01 in Model 1 and Model 2, respectively). ABCA1 rs2246293 interacted with circulating 

EPA to modulate HDL (P = 0.006 and 0.05 in Model 1 and Model 2, respectively). None of these 

three interactions met our a priori cut point for significance with correction for multiple hypotheses 

testing (P < 0.001).  

(3) Stage III: Supportive evidence of methylation in GOLDN and gene expression in ENCODE 

Two SNPs showed significant associations and interactions with the outcome of DNA 

methylation levels of the CpG sites within the respective genetic regions, which are ABCA1 

rs2246293 and APOE rs405509. The G allele of ABCA1 rs2246293 was associated with higher 

methylation level of cg14019050 (P = 3.51×10
-18 

in Model 1) (Figure 5.2B), and this association 

was further modified by the circulating EPA (regression coefficient and P value for the interaction 

term in Model 1 was -2.83 and 0.007, irrespectively) (Figure 5.2D). Additionally, the A allele of 

APOE rs405509 was shown to be associated with higher methylation of cg04406254 (P = 0.008 in 

Model 1), which was previously reported with a different statistical model [CHAPTER 3], and this 

association was also modified by the circulating ALA (regression coefficient and P value for the 

interaction term in Model 1 was -13.25 and 0.009, irrespectively) (Figure 5.3D). 

Methylation level of cg14019050 within the ABCA1 was negatively correlated with plasma 

HDL cholesterol in the GOLDN study (R = -0.12, P = 0.0002) (Figure 5.2E) and ABCA1 gene 

expression with data from ENCODE consortium (R = -0.61, P = 0.009) (Figure 5.2F). Additionally, 

methylation level of cg04406254 in the APOE was negatively associated with plasma TG (R = -0.10, 
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P = 0.002) (Figure 5.3E, 5.3G)  and APOE gene expression with data from ENCODE consortium (R 

= -0.66, P = 0.004) (Figure 5.2F). 

 

5.5 Discussion 

Using the strict statistical significance threshold adjusted for multiple-testing, we did not observe 

interactions between 7 predicted methylation-related SNPs and 7 fatty acids to modulate blood lipids. 

However, two loci with nominal statistical significance were supported by the analysis of DNA 

methylation, suggesting their biological significance. Our consistent results for the outcome of blood 

lipids and DNA methylation measurements implied that ABCA1 promoter SNP rs2246293 may interact 

with circulating EPA to modulate blood HDL through its genotype-dependent effect on DNA 

methylation of cg14019050, and the interaction between APOE promoter SNP rs405509 and circulating 

ALA for the outcome of blood TG may be contributed by the differential changes in DNA methylation 

of cg04406254. Our observations suggest a possible mechanistic role of epigenetic mechanism in 

observed gene-by-environment interactions.  

According to our findings, the major G allele of ABCA1 rs2246293 was associated with lower blood 

HDL cholesterol but higher methylation of cg14019050. Further, the regression coefficient for the 

interaction term between the SNP and circulating EPA for the outcome of HDL is positive, while it is 

negative for the outcome of methylation of cg14019050. This means that the difference, per copy of the 

G allele, of the difference in HDL associated with one unit higher circulating EPA is positive, while the 

difference, per copy of the G allele, of the difference in the methylation of cg14019050 associated with 

one unit higher circulating EPA is negative. These opposite findings for blood HDL and methylation of 

cg14019050 was consistent with their negative correlation, and also negative correlation between 

ABCA1 gene expression and methylation of cg14019050. Our findings of the relationship of rs2246293 

G allele – higher promoter methylation – lower ABCA1 gene expression – lower blood HDL cholesterol 

was not only consistent with previous studies but also with the biological function of ABCA1. ABCA1 

encodes a membrane transporter involved in the reverse cholesterol transport pathway by promoting 

efflux of free cholesterol and phospholipids to form HDL particles [32]. Our group and others 

demonstrated that loss-of-functional mutations in ABCA1 contribute to the etiology of Tangier disease, a 

disease characterized by extremely low level or even absence of HDL cholesterol [33-35]. Cg14019050 

is a CpG site located within the promoter region of ABCA1. In previous studies, blood HDL was 

negatively correlated with methylation of ABCA1 promoter in familial hypercholesterolemia [36].  

The findings of the APOE locus were consistent with our own data and also with previous studies. The 

minor A allele of APOE promoter SNP rs405509 was found to be associated with lower TG but higher 

methylation of cg04406254. The regression coefficients for the interaction term SNP×ALA were also 

with the opposite sign for TG and methylation, of which was positive for TG but negative for 

methylation. This means that the difference, per copy of the A allele, of the difference in TG associated 

with one unit higher circulating ALA is positive, while the difference, per copy of the A allele, of the 

difference in the methylation of cg04406254 associated with one unit higher circulating ALA is negative. 

Being consistent to the opposite directions observed with the association and interaction studies, 
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methylation of cg04406254 was shown to have negative correlation with TG and also APOE expression. 

Compared to C allele of rs405509, A allele exhibited lower gene transcription [37], supporting our 

observations of the associations of A allele – higher methylation – lower gene expression.  

Our study was limited by the observational study design, from which the association not the cause-effect 

relationship can be concluded. Our study calls for the intervention study and animal experiment to 

validate our hypothesis of the mechanistic role of DNA methylation for observed gene-by-environment 

interactions. From the perspective of statistical significance, the issue of under-power may account for 

the lack of significant interactions according to the multiple-testing corrected significance level. 

However, the consistent findings with blood lipids and with methylation provided biological supports 

for those interactions shown to be significant under nominal significance level. Not all studies measured 

fatty acids in the same compartment, which may also mask the potential significance for the interaction 

tests. The methylation analysis is only conducted in one study. Some of the fatty acids are biomarkers of 

intake while others are biomarkers of metabolism, so further work is needed with dietary fatty acids for 

confirmation. 

The current study indicates that the molecular mechanisms for the observed gene-by-environment 

interaction studies may be related to epigenetic modifications. It suggests that methylation-related SNPs 

modify the effects of environmental factors on the phenotypes through genotype-dependent changes in 

DNA methylation. Our findings have clinical implications. It is impossible to change the genotypes an 

individual carries, but it is definitely possible to change DNA methylation status by identifying the 

corresponding modulators. In this case, the genotype-dependent deleterious effects will be ameliorated 

through the application of methylation modulators. Our study provides a novel and biologically 

important direction for future research of the mechanisms underlying gene-by-environment interactions. 
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Table 5.1. Population characteristics, blood lipids, and circulating fatty acids in each cohort* 

 

  N Age % 
Women 

HDL TG   Circulating fatty acids, % total fatty acids 

  Compartment PA OA LA AA ALA EPA DHA 

Three-City (3C) Study 1240 74±5 60 60.8±15.4 113.2±56.8 plasma 28.3±5.8 20.4±3.9 24.7±5.5 6.7±1.9 0.4±0.2 1.0±0.6 2.4±0.8 

Atherosclerosis Risk in 
Communities (ARIC) 

Study 

3385 54±6 53 52.0±16.9 137.4±92.3 plasma 
phospholipids 

25.4±1.7 8.6±1.1 22.0±2.7 11.5±2.0 0.1±0.1 0.6±0.3 2.8±0.9 

Cardiovascular Health 
Study (CHS) 

2399 72±5 62   plasma 
phospholipids 

25.5±1.6 7.6±1.1 20.0±2.5 10.9±1.9 0.2±0.1 0.6±0.4 3.0±1.0 

Genetics of Lipid 
Lowering Drugs and 

Diet Network (GOLDN) 
Study 

1120 48±16 52 47.1±13.1 138.8±115.8 erythrocytes 22.8±1.2 16.1±1.1 12.9±1.4 13.6±1.2 0.1±0.04 0.5±0.3 3.0±0.9 

Multi-Ethnic Study of 
Atherosclerosis (MESA) 

674 62±10 53 52.7±16.1 131.4±79.0 plasma 
phospholipids 

25.8±1.9 8.3±1.2 20.9±3.0 12.1±2.2 0.2±0.1 1.0±0.7 3.7±1.4 

Invescchiare in Chianti 
(InCHIANTI) 

1002 68±15 55 56.3±15.0 123.4±65.6 plasma 22.5±2.4 25.8±3.7 24.9±3.9 8.0±1.9 0.5±0.2 0.6±0.2 2.3±0.8 

Women's Genome 
Health Study (WGHS) 

652 54±7 100 54.2±14.7 142.3±88.5 erythrocytes 23.4±2.3 15.0±1.5 12.3±1.4 12.7±2.3 0.2±0.1 0.5±0.2 3.3±1.0 

*Data are mean ± SD. 
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         Table 5.2. Meta-analysis of associations between SNPs and blood HDL and TG 

 

SNP Gene Coded 
allele 

HDL (mg/dl)   logged TG (mg/dl) 

Model 11   Model 22  Model 11   Model 22 

β3 (95%CI) P N   β3 (95%CI) P N   β3 (95%CI) P N   β3 (95%CI) P N 

rs405509 APOE A 0.10 
 (-0.37,0.58) 

0.67 6378  0.18 
 (-0.28,0.65) 

0.44 5924  -0.03  
(-0.05,-0.01) 

2.44E-04 6383  -0.03 
 (-0.05,-0.01) 

7.51E-04 5928 

rs2246293 ABCA1 G -0.46 
 (-0.97,0.04) 

0.07 6737  -0.60 
 (-1.08,-0.12) 

0.015 6124  -0.01 
 (-0.02,0.01) 

0.5222 6738  0.001  
(-0.01,0.02) 

0.8783 6124 

rs3761740 HMGCR A 0.14 
 (-0.51,0.78) 

0.68 10115  0.16 
 (-0.46,0.78) 

0.62 9464  0.01 
 (-0.02,0.03) 

0.5628 10120  0.005  
(-0.02,0.03) 

0.6585 9468 

rs662799 APOA5 G -1.68 
(-2.59,-0.78) 

0.0002 8035  -2.00  
(-2.86,-1.13) 

6.01E-06 7420  0.15 
 (0.12,0.19) 

1.36E-18 8036  0.15 
 (0.12,0.18) 

7.07E-19 7420 

rs2479409 PCSK9 C 0.03  
(-0.56,0.62) 

0.92 4878  -0.25  
(-0.82,0.31) 

0.38 4675  -0.01  
(-0.03,0.01) 

0.486 4878  0.002 
 (-0.02,0.02) 

0.8242 4675 

rs1169287 HNF1A T -1.14 
 (-2.63,0.34) 

0.13 7740  -1.25  
(-2.81,0.30) 

0.11 7127  -0.002 
 (-0.06,0.06) 

0.9493 7741  0.0003  
(-0.06,0.06) 

0.993 7127 

rs1169288 HNF1A C 0.27 
 (-0.15,0.69) 

0.20 10139   0.19  
(-0.21,0.59) 

0.36 9487   -0.002 
 (-0.02,0.01) 

0.8122 10144   0.0007 
 (-0.01,0.02) 

0.9235 9491 

1
Model 1 adjusted for age, sex, study center, population structure (cohort-specific metric); 

2
Model 2 adjusted for covariates in Model 1 plus BMI (continuous, kg/m2), smoking (2 categories: never/past vs. current smokers), physical activity (continuous, based 

on study-specific metric), drinking (2 categories: current vs. former/never), estrogen therapy usage (2 categories: yes/no), lipid-lowering medication usage  (2 
categories: yes/no), education level (categorical: cohort-specific metric), total energy intake (continuous, kcal/day), dietary total fat intake (continuous, % total energy 
intake/day), dietary total folate intake (continuous, mcg/day), dietary VitB12 intake (continuous, mcg/day), glycemic load (quintile of g/day) (or glycemic index (quintile) 
or whole grain intake (quintile of g/day)); 
3
β represents the regression coefficient for the expected changes in blood HDL (mg/dl) or ln(TG) (mg/dl) per copy of coded allele. 
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Table 5.3. Meta-analysis of interactions between SNPs and circulation fatty acids in association with blood HDL and TG 

Fatty 
acids 
(% total 
fatty 
acids) 

SNP Gene Co
ded 
alle
le 

HDL (mg/dl)   ln(TG) (mg/dl) 

Model 1
1
   Model 2

2
  Model 1

1
   Model 2

2
 

β
3
 (95%CI) P N   β

3
 (95%CI) P N   β

3
 (95%CI) P N   β

3
 (95%CI) P N 

PA 
(16:0) 

rs405509 APOE A -0.04 (-0.20,0.13) 0.66 6342  -0.04 (-0.23,0.14) 0.65 5888  -0.004 (-
0.01,0.0007) 

0.091 6347  -0.01 (-0.01,0.0003) 0.06 5892 

rs2246293 ABCA1 G -0.05 (-0.23,0.12) 0.56 6709  -0.04 (-0.22,0.14) 0.68 6096  -0.003 (-0.01,0.01) 0.925 6710  -0.001 (-0.01,0.005) 0.73 6101 

rs3761740 HMGCR A 0.13 (-0.11,0.38) 0.28 10087  0.12 (-0.10,0.34) 0.30 9436  0.002 (-0.01,0.01) 0.655 1009
2 

 0.01 (-0.003,0.02) 0.17 9458 

rs662799 APOA5 G -0.23 (-0.63,0.17) 0.26 7999  -0.33 (-0.67,0.02) 0.06 7384  0.01 (-0.01,0.02) 0.441 8000  0.001 (-0.01,0.01) 0.85 7384 

rs2479409 PCSK9 C -0.15 (-0.56,0.26) 0.47 4850  -0.18 (-0.57,0.22) 0.38 4647  0.003 (-0.01,0.02) 0.669 4850  0.01 (-0.01,0.02) 0.37 4643 

rs1169287 HNF1A T -0.95 (-1.55,-0.36) 0.002 7712  -0.64 (-1.20,-0.08) 0.03 7099  0.01 (-0.01,0.02) 0.383 7713  0.01 (-0.0009,0.02) 0.07 7098 

rs1169288 HNF1A C -0.01 (-0.18,0.17) 0.94 10111   0.02 (-0.16,0.20) 0.85 9459   -0.001 (-
0.01,0.005) 

0.645 1011
6 

  0.001 (-0.01,0.01) 0.83 9445 

OA 
(18:1) 

rs405509 APOE A 0.26 (0.06,0.46) 0.01 6342  0.18 (-0.03,0.38) 0.10 5888  -0.01 (-0.01,-
0.001) 

0.022 6347  -0.01 (-0.01,0.0006) 0.07 5892 

rs2246293 ABCA1 G -0.06 (-0.32,0.21) 0.68 6709  -0.03 (-0.31,0.26) 0.86 6096  -0.01 (-0.01,0.002) 0.125 6710  -0.01 (-0.02,0.002) 0.15 6101 

rs3761740 HMGCR A 0.07 (-0.24,0.38) 0.65 10087  0.05 (-0.27,0.38) 0.75 9436  0.01 (-0.003,0.02) 0.178 1009
2 

 0.005 (-0.01,0.02) 0.42 9458 

rs662799 APOA5 G -0.38 (-0.80,0.03) 0.07 7999  -0.26 (-0.68,0.16) 0.22 7384  0.003 (-0.01,0.02) 0.66 8000  0.005 (-0.01,0.02) 0.41 7384 

rs2479409 PCSK9 C -0.12 (-0.71,0.47) 0.69 4850  -0.07 (-0.63,0.48) 0.80 4647  -0.004 (-0.02,0.02) 0.70 4850  -0.003 (-0.02,0.02) 0.74 4643 

rs1169287 HNF1A T -0.59 (-1.50,0.32) 0.20 7712  -0.24 (-1.16,0.68) 0.61 7099  0.01 (-0.01,0.04) 0.366 7713  -0.002 (-0.02,0.01) 0.81 7098 

rs1169288 HNF1A C 0.12 (-0.09,0.32) 0.26 10111   0.09-0.12,0.29) 0.41 9459   -0.002 (-
0.01,0.004) 

0.507 1011
6 

  -0.004 (-0.01,0.003) 0.29 9445 

LA 
(18:2n6

) 

rs405509 APOE A -0.04 (-0.18,0.11) 0.62 6342  -0.02 (-0.17,0.14) 0.83 5888  0.004 (-
0.0003,0.01) 

0.07 6347  0.004 (-0.0005,0.01) 0.09 5892 

rs2246293 ABCA1 G 0.02 (-0.14,0.18) 0.83 6709  0.05 (-0.11,0.22) 0.52 6096  -0.001 (-
0.01,0.004) 

0.622 6710  -0.002 (-0.01,0.004) 0.59 6101 

rs3761740 HMGCR A -0.05 (-0.26,0.15) 0.61 10087  -0.08 (-0.28,0.12) 0.44 9436  -0.003 (-
0.01,0.003) 

0.338 1009
2 

 -0.004 (-0.01,0.003) 0.29 9458 

rs662799 APOA5 G 0.08 (-0.23,0.39) 0.60 7999  0.16 (-0.12,0.45) 0.25 7384  -0.003 (-0.01,0.01) 0.581 8000  -0.002 (-0.009,0.004) 0.50 7384 

rs2479409 PCSK9 C 0.03 (-0.22,0.28) 0.83 4850  -0.02 (-0.26,0.22) 0.85 4647  0.0004 (-0.01,0.01) 0.925 4850  0.002 (-0.01,0.01) 0.62 4643 

rs1169287 HNF1A T 0.59 (0.09,1.09) 0.02 7712  0.36 (-0.14,0.85) 0.16 7099  -0.01 (-0.03,-
0.0008) 

0.038 7713  -0.002 (-0.01,0.01) 0.62 7098 

rs1169288 HNF1A C -0.09 (-0.22,0.05) 0.20 10111   -0.11 (-0.24,0.03) 0.11 9459   0.001 (-0.004,0.01) 0.775 1011
6 

  0.001 (-0.004,0.01) 0.74 9445 

AA 
(20:4n6

) 

rs405509 APOE A -0.11 (-0.37,0.14) 0.37 6342  0.02 (-0.23,0.26) 0.90 5888  0.005 (-0.004,0.01) 0.307 6347  0.001 (-0.01,0.01) 0.88 5892 

rs2246293 ABCA1 G 0.12 (-0.14,0.39) 0.35 6709  0.19 (-0.07,0.44) 0.15 6096  0.01 (-0.004,0.01) 0.271 6710  0.002 (-0.01,0.01) 0.71 6101 

rs3761740 HMGCR A -0.35 (-0.70,-
0.004) 

0.05 10087  -0.20 (-0.52,0.13) 0.24 9436  0.002 (-0.01,0.01) 0.80 1009
2 

 0.0003 (-0.01,0.01) 0.97 9458 
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rs662799 APOA5 G 0.35 (-0.12,0.82) 0.15 7999  0.59 (0.13,1.05) 0.01 7384  -0.01 (-0.03,0.004) 0.122 8000  -0.01 (-0.02,-0.0002) 0.04 7384 

rs2479409 PCSK9 C 0.06 (-0.28,0.40) 0.74 4850  0.03 (-0.29,0.34) 0.87 4647  0.004 (-0.008,0.02) 0.517 4850  -0.003 (-0.01,0.01) 0.59 4643 

rs1169287 HNF1A T 0.43 (-0.43,1.29) 0.33 7712  -0.06 (-0.96,0.85) 0.90 7099  -0.005 (-0.03,0.02) 0.76 7713  -0.01 (-0.02,0.01) 0.33 7098 

rs1169288 HNF1A C 0.05 (-0.17,0.26) 0.66 10111   0.08 (-0.13,0.29) 0.45 9459   -0.002 (-
0.009,0.01) 

0.649 1011
6 

  0.002 (-0.01,0.01) 0.74 9445 

ALA 
(18:3n3

) 

rs405509 APOE A -1.77 (-5.70,2.16) 0.38 6342  -2.76 (-6.57,1.05) 0.16 5888  0.12 (-0.0002,0.24) 0.051 6347  0.16 (0.04,0.27) 0.01 5892 

rs2246293 ABCA1 G 1.62 (-4.29,7.53) 0.59 6709  2.25 (-3.80,8.30) 0.47 6096  -0.14 (-0.31,0.03) 0.114 6710  -0.19 (-0.39,-0.003) 0.05 6101 

rs3761740 HMGCR A 1.99 (-4.56,8.53) 0.55 10087  2.85 (-3.60,9.30) 0.39 9436  0.12 (-0.09,0.32) 0.261 1009
2 

 0.08 (-0.13,0.28) 0.48 9458 

rs662799 APOA5 G -3.16 (-11.32,5.00) 0.45 7999  -3.40 (-11.69,4.88) 0.42 7384  0.10 (-0.16,0.36) 0.464 8000  0.03 (-0.2,0.27) 0.78 7384 

rs2479409 PCSK9 C -3.24 (-16.01,9.53) 0.62 4850  1.13 (-10.29,12.56) 0.85 4647  -0.04 (-0.45,0.38) 0.862 4850  -0.16 (-0.54,0.23) 0.42 4643 

rs1169287 HNF1A T 15.30 (2.01,28.60) 0.02 7712  17.97 (4.71,31.22) 0.008 7099  -0.06 (-0.48,0.36) 0.789 7713  -0.10 (-0.42,0.23) 0.56 7098 

rs1169288 HNF1A C -4.54 (-8.40,-0.69) 0.02 10111   -3.15 (-6.95,0.65) 0.10 9459   0.11 (-0.01,0.24) 0.072 1011
6 

  0.06 (-0.06,0.19) 0.33 9445 

EPA 
(20:5n3

) 

rs405509 APOE A -0.80 (-2.15,0.56) 0.25 6342  -1.01 (-2.39,0.36) 0.15 5888  -0.004 (-0.04,0.04) 0.863 6347  0.005 (-0.04,0.05) 0.83 5892 

rs2246293 ABCA1 G 1.69 (0.49,2.88) 0.006 6709  1.15 (-0.01,2.32) 0.05 6096  0.01 (-0.03,0.05) 0.636 6710  0.03 (-0.02,0.08) 0.25 6101 

rs3761740 HMGCR A -0.67 (-2.45,1.10) 0.46 10087  -1.32 (-2.89,0.25) 0.10 9436  0.01 (-0.05,0.06) 0.858 1009
2 

 0.05 (-0.01,0.11) 0.09 9458 

rs662799 APOA5 G 0.46 (-2.23,3.15) 0.74 7999  -1.24 (-3.37,0.88) 0.25 7384  0.0002 (-0.08,0.08) 1.00 8000  0.003 (-0.06,0.06) 0.93 7384 

rs2479409 PCSK9 C 0.35 (-1.26,1.97) 0.67 4850  0.47 (-1.05,2.00) 0.54 4647  0.01 (-0.05,0.07) 0.795 4850  -0.01 (-0.06,0.04) 0.80 4643 

rs1169287 HNF1A T 5.45 (-0.39,11.29) 0.07 7712  6.77 (0.98,12.56) 0.02 7099  -0.02 (-0.17,0.13) 0.754 7713  0.03 (-0.04,0.1) 0.37 7098 

rs1169288 HNF1A C 0.07 (-1.05,1.19) 0.90 10111   -0.14 (-1.29,1.01) 0.81 9459   -0.02 (-0.06,0.01) 0.226 1011
6 

  -0.02 (-0.06,0.02) 0.34 9445 

DHA 
(22:6n3

) 

rs405509 APOE A -0.28 (-0.83,0.26) 0.31 6342  -0.35 (-0.87,0.17) 0.18 5888  0.002 (-0.02,0.02) 0.80 6347  0.01 (-0.01,0.02) 0.57 5892 

rs2246293 ABCA1 G 0.17 (-0.35,0.69) 0.52 6709  0.18 (-0.32,0.68) 0.47 6096  -0.0002 (-
0.02,0.02) 

0.98 6710  0.01 (-0.01,0.03) 0.45 6101 

rs3761740 HMGCR A 0.06 (-0.62,0.73) 0.87 10087  -0.01 (-0.63,0.60) 0.96 9436  0.01 (-0.02,0.03) 0.555 1009
2 

 0.02 (-0.01,0.05) 0.15 9458 

rs662799 APOA5 G 0.22 (-0.73,1.16) 0.65 7999  -0.14 (-1.05,0.77) 0.76 7384  -0.02 (-0.06,0.01) 0.183 8000  -0.02 (-0.04,-0.002) 0.03 7384 

rs2479409 PCSK9 C -0.14 (-0.79,0.50) 0.67 4850  0.06 (-0.54,0.66) 0.85 4647  0.01 (-0.01,0.03) 0.279 4850  0.02 (-0.0004,0.04) 0.06 4643 

rs1169287 HNF1A T 0.11 (-1.46,1.69) 0.89 7712  1.08 (-0.38,2.54) 0.15 7099  0.004 (-0.06,0.07) 0.90 7713  0.002 (-0.02,0.03) 0.89 7098 

rs1169288 HNF1A C 0.03 (-0.41,0.46) 0.91 10111   -0.06 (-0.47,0.35) 0.76 9459   -0.001 (-0.02,0.01) 0.911 1011
6 

  0.02 (0.001,0.03) 0.04 9445 

1
Model 1 adjusted for age, sex, study center, population structure (cohort-specific metric); 

2
Model 2 adjusted for covariates in Model 1 plus BMI (continuous, kg/m2), smoking (2 categories: never/past vs. current smokers), physical activity (continuous, based on study-specific metric), drinking (2 categories: current vs. 

former/never), estrogen therapy usage (2 categories: yes/no), lipid-lowering medication usage  (2 categories: yes/no), education level (categorical: cohort-specific metric), total energy intake (continuous, kcal/day), dietary total fat intake 
(continuous, % total energy intake/day), dietary total folate intake (continuous, mcg/day), dietary VitB12 intake (continuous, mcg/day), glycemic load (quintile of g/day) (or glycemic index (quintile) or whole grain intake (quintile of g/day)); 
3
β represents the regression coefficient for the expected difference in size of the dietary fatty acids association with blood HDL (mg/dl) or ln(TG) (mg/dl) per copy of coded allele. 
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Supplementary Table 5.1. Association between SNPs and DNA methylation of CpG sites. 

Gene SNP Code
d 

allele 

N of 
CpG 

tested 

CpG sites 

N name Model 11  Model 22 

    β3 sem
3 

P   β3 sem
3 

P 

APOE rs405509 A 13 1 cg04406254 0.46 0.17 0.01  0.46 0.17 0.009 

    2 cg06750524 0.49 0.22 0.03  0.48 0.22 0.03 

        3 cg16471933 0.46 0.20 0.02   0.52 0.20 0.01 

ABCA1 rs2246293 G 19 1 cg02945674 18.24 1.16 1.52E-13  18.48 1.19 7.51E-14 

        2 cg14019050 8.84 0.28 3.50E-18   8.82 0.28 5.64E-18 

HMGCR rs3761740 A 17 1 cg11003009 -0.19 0.06 0.003   -0.21 0.06 0.002 

APOA5 rs662799 G 8 1 cg02157083 -0.72 0.26 0.01  -0.70 0.27 0.01 

    2 cg03481039 0.85 0.31 0.01  0.86 0.32 0.01 

        3 cg25454270 0.99 0.38 0.03   1.06 0.40 0.02 

PCSK9 rs2479409 C 23 1 cg00045070 33.11 0.67 3.76E-18  33.11 0.68 1.35E-18 

    2 cg04554817 -0.52 0.21 0.02  -0.51 0.21 0.02 

    3 cg05118916 -1.21 0.16 2.56E-09  -1.26 0.17 2.74E-09 

    4 cg06197377 -0.98 0.15 1.68E-07  -0.97 0.16 3.27E-07 

    5 cg13462158 -2.31 0.73 0.002  -2.46 0.74 0.002 

    6 cg14993491 -0.71 0.19 3.81E-04  -0.77 0.21 5.17E-04 

    7 cg17826594 -0.27 0.11 0.02  -0.28 0.11 0.01 

    8 cg20245116 -2.02 0.73 0.007  -2.16 0.75 0.006 

    9 cg25957967 -0.16 0.05 0.003  -0.13 0.05 0.01 

        10 cg26666107 -0.40 0.10 1.65E-04   -0.39 0.11 3.64E-04 

HNF1A rs1169287 T 17 1 cg01394199 -0.38 0.12 0.03  -0.35 0.10 0.02 

    2 cg03495030 2.64 0.71 0.05  2.57 0.73 0.04 

        3 cg16175725 -1.03 0.33 0.04   -1.06 0.34 0.03 

HNF1A rs1169288 C 17 1 cg01341572 -0.24 0.09 0.01  -0.24 0.09 0.01 

    2 cg01394199 -0.13 0.06 0.03  -0.13 0.05 0.02 

    3 cg02153339 0.69 0.13 1.01E-05  0.67 0.13 1.46E-05 

    4 cg10573521 0.32 0.12 0.01  0.28 0.12 0.02 

    5 cg14101638 1.54 0.15 6.03E-11  1.57 0.16 7.53E-11 

        6 cg23661013 0.55 0.14 2.24E-04   0.56 0.14 2.07E-04 
1
Model 1 adjusted for age, sex, study center, pedigree, and the first 4 principle components of cellulary purity and population structure; 

2
Model 2 adjusted for covariates in Model 1 plus BMI (continuous, kg/m2), smoking (2 categories: never/past vs. current smokers), physical 

activity (continuous, based on study-specific metric), drinking (2 categories: current vs. former/never), estrogen therapy usage (2 categories: 
yes/no), lipid-lowering medication usage  (2 categories: yes/no), education level (categorical), total energy intake (continuous, kcal/day), dietary 
total fat intake (continuous, % total energy intake/day), dietary total folate intake (continuous, mcg/day), dietary VitB12 intake (continuous, 
mcg/day), glycemic load (quintile of g/day); 
3
β and sem represent the regression coefficient and standard error, respectively, for the expected changes in methylation per copy of coded 

allele. 
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Figure 5.1. Study design of Chapter 5 

 

Candidate SNP Method Candidate Gene Method 

Source I 
SNPs from lipid GWAS 

(323 SNPs) 

Inclusion Criteria: 
-Association with phenotype (Required) 
    Criteria 1: genes related with blood lipids; 
- Fatty acids effect (Required) 
    Criteria 2: fatty acids affect gene expression or DNA sequence close to SNP predicted to 
contain PPARα or PPARγ    p    v          ; 
-Statistical Power (Required) 
    Criteria 3: Minor allele frequency (MAF) in Hapmap CEU population is greater than 0.01. 
-DNA methylation (Required) 

Criteria 4: close to CpG island; 
Criteria 5: within promoter; 
Criteria 6: within region with tissue differential DNA methylation status; 
Criteria 7: within region with tissue differential chromatin status; 

-Functionality of SNP (Optional) 
    Criteria 8: functional evidence published in previous studies; 
Exclusion Criteria: 
    Criteria 9: Remove those SNPs with high linkage disequilibrium (R

2
>0.8) 

 

Source II 
Lipid genes from lipid GWAS; 

(40 genes) 

STAGE I: SNP selection 

STAGE II: Meta-analysis in CHARGE 

STAGE III: Validation by methylation in GOLDN and gene expression in ENCODE 

SNPs associate with blood HDL and TG 

SNPs interact with circulating fatty acids to modulate blood HDL and TG 

SNPs associate with blood methylation in GOLDN 

SNPs interact with erythrocyte fatty acids to modulate blood methylation in GOLDN 

Correlation between blood methylation and blood HDL and TG in GOLDN 

Correlation between methylation and gene expression across 17 cell types in ENCODE 

Number SNP Gene MAF Criteria 

1 rs405509 APOE 0.491 1,2,3,4,5,6,7,8 
2 rs2246293 ABCA1 0.412 1,2,3,4,5,6,7 
3 rs3761740 HMGCR 0.153 1,2,3,4,5,6,7,8 
4 rs662799 APOA5 0.017 1,2,3,4,5,6,7,8 
5 rs2479409 PCSK9 0.35 1,2,3,4,5,6,7,8 
6 rs1169288 HNF1A 0.283 1,2,3,4,5,6,7,8 
7 rs1169287 HNF1A 0.017 1,2,3,4,5,6,7 
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Figure 5.2. ABCA1 rs2246293 modifies the association of EPA with HDL through genotype-dependent changes in DNA 

methylation of cg14019050. Genetic associations with HDL (Model 2) and methylation of ABCA1 cg14019050 (Model 1) were 

presented by forest plot with meta-analysis in CHARGE consortium (A) and bar-charts by genotype in GOLDN study (B), 

respectively. Interactions between rs2246293 and EPA in associations with HDL (Model 1) and methylation of ABCA1 cg14019050 

(Model 1) were presented by forest plot with meta-analysis in CHARGE consortium (C) and plot with genotype-dependent regression 

lines in GOLDN study (D), respectively. In forest plots, estimated beta and its 95% CI, illustrating the changes in HDL per copy of the 

rs2246293 G allele in panel A and the association with each one percent higher level of circulating EPA with HDL per copy of the 

rs2246293 G allele in panel C, respectively, were represented by the filled square and horizontal line for each population, or filled 

diamond for the summary. In panel D, βi and Pi represented regression coefficient and the corresponding statistical significance for 

the interaction term, which was interpreted as the association with each one percent higher level of circulating EPA with methylation 

of cg14019050 per copy of the rs2246293 G allele, while βt and Pt represented regression coefficient and statistical significance for 

trend, which were interpreted as the association of circulating EPA with cg14019050 methylation according to three genotype groups 

of rs2246293 (GG, CG, and CC). Panel E and F illustrated the Pearson correlation of cg14019050 methylation with HDL in GOLDN 

(E) and with gene expression of ABCA1 in ENCODE consortium (F), respectively, in which each black dot represented one 

observation, the gray line represented the regression line, and the correlation coefficient (R), P value and sample size (N) were 

displayed in the box. Model 1 adjusted for age, sex, study center, population structure/pedigree, principle components for cellular 

purity (only for methylation analysis), and Model 2 further adjusted for BMI, smoking, physical activity, drinking, estrogen therapy 

usage, lipid-lowering medication usage, education level, total energy intake, dietary intake of total fat, total folate, and vitamin B12, 

glycemic load (or glycemic index or whole grain intake). 
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Figure 5.3. APOE rs405509 modifies the association of ALA with TG through genotype-dependent changes in DNA 

methylation of cg04406254. Genetic associations with natural logged TG (Model 1) and methylation of APOE cg405509 (Model 1) were presented by forest 

plot with meta-analysis in CHARGE consortium (A) and bar-charts by genotype in GOLDN study (B), respectively. Interactions between rs405509 and ALA in 

associations with natural logged TG (Model 2) and methylation of APOE cg04406254 (Model 1) were presented by forest plot with meta-analysis in CHARGE 

consortium (C) and plot with genotype-dependent regression lines in GOLDN study (D), respectively. In forest plots, estimated beta and its 95% CI, illustrating the 
changes in ln(TG) per copy of the rs405509 A allele in panel A and the association with each one percent higher level of circulating ALA with ln(TG) per copy of the 

rs405509 A allele in panel C, respectively, were represented by the filled square and horizontal line for each population, or filled diamond for the summary. In panel D, 

βi and Pi represented regression coefficient and the corresponding statistical significance for the interaction term, which was interpreted as the association with each one 
percent higher level of circulating ALA with methylation of cg04406254 per copy of the rs405509 A allele, while βt and Pt represented regression coefficient and 

statistical significance for trend, which were interpreted as the association of circulating ALA with cg04406254 methylation according to three genotype groups of 

rs405509 (CC, AC, and AA). Panel E, F, and G illustrated the Pearson correlation of cg04406254 methylation with ln(TG) in GOLDN (E and G) and with gene 
expression of APOE in ENCODE consortium (F), respectively, in which each black dot represented one observation, the gray line represented the regression line, and 

the correlation coefficient (R), P value and sample size (N) were displayed in the box. Model 1 adjusted for age, sex, study center, population structure/pedigree, 

principle components for cellular purity (only for methylation analysis), and Model 2 further adjusted for BMI, smoking, physical activity, drinking, estrogen therapy 
usage, lipid-lowering medication usage, education level, total energy intake, dietary intake of total fat, total folate, and vitamin B12, glycemic load (or glycemic index 

or whole grain intake).  
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5.7 Supplementary methods of Chapter 5 

1. Study cohort description 

Three-City (3C) Study: The 3C Study is a population-based prospective cohort designed to investigate the 

vascular risk factors for dementia. In 1999-2000, 9294 participants, aged ≥ 65 years, were recruited from 

communities in Bordeaux (n = 2104), Dijon (n = 4931), and Montpellier (n = 2259) in France [1]. There were 

1240 participants in the current study. The protocol was approved by the Consultative Committee for the 

Protection of Persons participating in Biomedical Research of the Kremlin-Bicetre University Hospital (Paris). 

All participants signed an informed consent form. 

The Atherosclerosis Risk in Communities (ARIC) Study: The ARIC study is a multi-center community-

based prospective study with the purpose to study the risk factors related to atherosclerosis [2] 

(http://www2.cscc.unc.edu/aric/). Launched in 1987, ARIC recruited 15,792 men and women aged 45-64 years 

from 4 communities: Forsyth County, NC; Jackson, MI; suburban areas of Minneapolis, MN; and Washington 

County, MD. 3385 White participants were included in the current study. This study was approved by the 

Institutional Review Board at each field center. Informed consent was received by all participants or their 

representatives. 

The Cardiovascular Health Study (CHS): The CHS is a population-based prospective cohort study of risk 

factors of coronary heart disease and stroke [3] (https://chs-nhlbi.org/). From a random sample of people on 

Medicare eligibility lists, 5201 predominantly White individuals aged ≥ 65 years were recruited in 1989-1990 

and an additional 687 African-Americans were enrolled in 1992-93 from 4 centers: Forsyth County, NC; 

Sacramento County, CA; Washington County, MD; and Pittsburgh, PA. For the current study, a total of 2399 

White participants were included. All institutional Review Board requirements were met prior to the initiation 

of the study at all sites. All participants signed the informed consent form. 

Genetics of Lipid Lowering Drugs and Diet Network (GOLDN) Study: The GOLDN study is a population-

based intervention study to evaluate the genetic factors of triglyceride response to a diet intervention with a high 

fat meal and fenofibrate treatment [4] (https://dsgweb.wustl.edu/goldn/). Overall 1120 participants with 

Northern European origin were re-recruited from the National Heart, Lung, and Blood Institute Family Heart 

Study [5] from 2 study centers in Minneapolis, MN and Salt Lake City, UT, and all of them were included in 

the analysis. The protocol of this study was approved by the Human Studies Committee of institutional review 

board at the University of Minnesota, University of Utah, and Tufts University/New England Medical Center. 

Written informed consent was obtained from all participants.    

Invescchiare in Chianti (InCHIANTI): The InCHIANTI study is a prospective population-based study of 

factors influencing walking ability in the elderly [6] (http://inchiantistudy.net/wp/). 1453 eligible subjects, with 

age ranges from 20 to 102 years, were randomly selected from the population registry of Greve in Chianti and 

Bagno a Ripoli in Italy and agreed to participate in the study. For the current study, 1002 participants were 

included. The protocol of this study was approved and informed consent from participants were obtained.  

Multi-Ethnic Study of Atherosclerosis (MESA): The MESA study is a population-based cohort designed to 

evaluate factors related with subclinical cardiovascular disease. 6500 subjects, aged from 45 to 84 years, were 

enrolled from 6 regions in USA, including Baltimore City and Baltimore County, MD; Chicago, IL; Forsyth 

County, NC; Los Angeles County, CA; New York, NY; and St. Paul, MN [7] (http://www.mesa-nhlbi.org/). 

http://www2.cscc.unc.edu/aric/
https://chs-nhlbi.org/
https://dsgweb.wustl.edu/goldn/
http://inchiantistudy.net/wp/
http://www.mesa-nhlbi.org/
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The proportions of White, African-American, Hispanics, and Asians are 38%, 28%, 23%, and 11%, respectively. 

The current study included 674 eligible Whites. The study was approved by the institutional review boards of 

the participating centers. All participants provided written informed consent. 

Women's Genome Health Study (WGHS): The WGHS study is a prospective cohort designed for genome-

wide association study of the population based on the NIH-funded Women’s Health Study (WHS) [8] initiated 

in 1992. More than 25,000 healthy women were included in the study and followed for more than 12 years for 

the incidence of common diseases. For the current study, 652 subjects were included. The study was approved 

by the institutional review board of Brigham and Women’s Hospital, Boston, MA, and monitored by an external 

data and safety monitoring board. All participants provided written informed consent.  
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2. Biochemical measurements 

3C: Fasting blood samples were collected at baseline to measure HDL cholesterol, triglycerides, and fatty acids. 

Details of the assessment of plasma fatty acids were described previously [9]. Briefly, plasma of fasting blood 

samples was used to extract total lipids, from which the composition of fatty acids were determined [10]. Gas 

chromatograph (Trace, Thermoelectron, Cergy-Pontoise, France) with a 25-m Carbowax capillary column was 

applied to measure the level of plasma fatty acids, expressed as a percentage of total fatty acids.  

ARIC: Fasing blood samples were collected. TG and HDL cholesterol were assayed using enzymatic methods 

and dextran-magnesium precipitation respectively [2].Plasma fatty acids from frozen fasting blood samples 

were measured at the Collaborative Studies Clinical Laboratory at Fairview-University Medical Center 

(Minneapolis, MN, USA), using an HP-5890 gas chromatograph (Hewlett-Packard, Palo Alto, CA, USA) with a 

100-meter capillary Varian CP7420 column. Details were described previously [11]. 

CHS: Fasting blood samples were used to measure plasma lipids and fatty acids. Plasma TG was measured by 

enzymatic methods on an Olympus Demand System (Olympus corp., Lake Success, NY., USA), and HDL 

cholesterol was measured by enzymatic method after precipitation of apolipoprotein B-containing lipoproteins 

with dextran sulfate/magnesium sulfate [12]. Methods of Folch was used to extract total lipids from plasma, and 

a one-dimentional TLC was used to separate the phospholipids from neutral lipids. Gas chromatography 

(Agilent5890) was used to measure the levels of plasma fatty acids, expressed as the percentage of total fatty 

acids. All the measurements were conducted at the Fred Hutchinson Cancer Research Center, and further 

confirmed by GC-MS at USDA (Peoria, IL, USA).  

GOLDN: TG was measured by glycerol-blanked enzymatic method on the Roche COBAS FARA centrifugal 

analyzer (Roche Diagnostics Corporation, USA). HDL cholesterol was measured by cholesterol oxidase 

reaction (Chol R1; Roche Diagnostics, USA) after precipitation of non-HDL cholesterol with 

magnesium/dextran. Erythrocyte membrane levels of fatty acids were measured. Lipids were extracted from the 

erythrocyte membrane with a mixture of chloroform:methanol (2:1, v/v) and then collected in heptanes. Fatty 

acids were separated and measured using a capillary Varian CP7420 100-meter column with a Hewlett Packard 

5890 gas chromatograph equipped with a HP6890A autosampler [13]. The levels of fatty acids were expressed 

as percentage of total fatty acids. 

InCHIANTI: TG and HDL cholesterol were determined by commercial assays (Roche Diagnostics, Mannheim, 

Germany). Plasma fatty acids were separated from fatty acid methyl esters (FAME), which were prepared 

through transesterification using modified Lepage and Roy’s method. HP6890 gas chromatograph (Hewlett-

Packard, Palo Alto, CA, USA) with a 30-meter fused silica column (HP-225; Hewlett-Packard) was applied for 

FAME separation. Calibration curve with the addition of six increasing amounts of individual FAME standards 

(NU Chek Prep, Inc., Elysian, MA, USA) to the same internal standard (C17:0; 50xg) was used for quantitative 

analysis of the fatty acids, yielding the levels as percentage of total fatty acids.  

MESA: TG was measured using a TG GB reagent (Roche Diagnostics, Indianapolis, IN, USA). HDL 

cholesterol was measured in EDTA plasma on a Vitros analyzer (Johnson & Johnson Clinical Diagnostic, Inc.) 

using a standard cholesterol oxidase method. Lipids were extracted from the plasma using a 

chloroform/methanol extraction method and the cholesterol esters, triglyceride, phospholipids and free fatty 

acids were separated by thin layer chromatography. Phospholipids were used to obtain the fatty acids methyl 
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esters, which were further detected by gas chromatography flame ionization. The level of fatty acids was 

expressed as the percentage of total fatty acids.  

WGHS: TG and HDL cholesterol were measured by direct assay and had low coefficeints of variation [8]. 

Erythrocyte membrane fatty acids were extracted with a mixture of chloroform:methanol (2:1, v/v) dissolved in 

heptane, and separated by a capillary Varian CP7420 100-meter column with a HP5890 gas chromatograph 

flame ionization. The results were expressed as the percentage of total fatty acids. 
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3. Genotyping methodology in each cohort: 

Supplementary Table 5.2. Genotyping, imputation, and quality control by each cohort 

 Genotyping 

platform and 

calling method 

Sample and filter criteria filter criteria Imputation 

3C Illumina 

Human610-

Quad 

BeadChips and 

Illuminus 

software 

SNPs were removed if one or more following conditions are met: Hardy-Weinberg 

P < 1×10
-6

; minor allele frequency < 1%; and missingness > 2%. 

MACH/MINIMAC using the EUR 

population reference haplotype data from 

the 1000 Genomes Project (2010 interim 

release based on sequence data freeze from 

04 Aug 2010 and phased haplotypes from 

Dec 2010). 

ARIC Affymetrix 6.0 

and Birdseed 

Sample filter criteria: Call rate<95%; discordant with previous genotype data; 

genotypic and phenotypic sex mismatch; suspected first-degree relative of an 

included individual based on genotype data; genetic outlier as assessed by Identity 

by State (IBS) using PLINK and >8SD along any of the first 10 principal 

components in EIGENSTRAT with 5 iteractions. 

SNP filter criteria: Call rate<95%; HWE P<5×10
-5

; MAF<1%. 

MACH with NCBI Build 36 as reference 

CHS Illumina 

370CNV and 

BeadStudio 

Sample filter criteria: Call rate<95%; 2 duplicate errors or Mendelian 

inconsistencies (for reference CEPH trios).  

SNP filter criteria: Call rate <97%; HWE P<5×10
-5

; 

BIMBAM10v0.91 with reference to 

HapMap CEU relsease 21A, Build 35 

using one round of imputations and the 

default expectation-maximization warm-

ups and runs. SNPs were excluded for 

variance on the allele dosage≤0.01. 

GOLDN Affymetrix 6.0 

and Birdseed 

SNP filter criteria: Monomorphic SNPs; Call rate <96%; Number of families with 

Mendelian error by MAF of SNPs: >3 families for MAF≥20%, >2 families for 

MAF≥10%, >1 family for MAF≥5%, any family for MAF<5%, SNPs were set for 

missing in those families remained errors; HWE P<5×10
-6

. 

Rs405509 and rs662799 were genotyped with Applied Biosystems TaqMan SNP 

genotyping system. 

MACH v1.0.16 with reference to Human 

Genome Build 36 

InCHIANTI Illumina 550K 

and BeadStudio 

Sample filter criteria: Call rate<98.5%; Sex misspecification. 

SNP filter criteria: Call rate <99%; HWE P<5×10
-4

; MAF<1%. 

MACH 

MESA Affymetrix 6.0 

and Birdseed 

Sample filter criteria: Heterozygosity>53%; individual-level genotyping call 

rate<95%. 

SNP filter criteria: Monomorphic SNP; call rate <95%. 

IMPUTE v2.1.0 using HapMap Phase I 

and II-CEU as the reference panel (release 

24-NCBI Build 36(dbSNP b126)). 

WGHS Illumina 

Infinium II and 

BeadStuido 

Sample filter criteria: Call rate<95%. 

SNP filter criteria: Call rate <95%; MAF≤1%; HWE P<5×10
-6

. 

MACH 
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4. Measurement of covariates in each cohort: 

3C: Demographic and social-economic information were recorded at baseline through 

inerview. Educational levels were grouped into 4 classes, which were no education or 

primary school only, secondary (middle) school, high school or vocational school, and 

university. Dietary information was collected through a food frequency questionnaire 

(FFQ) and a 24h dietary recall administered by a specifically trained dietician [14, 15]. 

Practice of physical activity was defined as regular when doing sport regularly or 

having at least 1 hour of leisure or household activity per day [16].  

ARIC Study: Dietary intake was obtained by a interviewer-administered semi-

quantitative FFQ with 66 items, which was modified from the validated Willett 61-

item FFQ [17, 18]. Education was categorized into three groups: less than high school 

(<12 years); completion of high school or vocational school (12 years); or more than 

high school (any college/professional school, >12 years) [19]. Physical activity was 

assessed by the modified Baecke questionnaire which defines 3 semi-continuous 

indices ranging from 1 (low) to 5 (high) for physical activity in sports, during leisure 

time, and at work [20, 21]. 

CHS: A self-administered 99-item picture-sort version of the National Cancer 

Institute FFQ and a validated 131-item Willett FFQ were used to collect the usual 

dietary intakes in 1989-90 and 1992-93, respectively [22, 23]. Education was grouped 

into <high school, high school graduate or some college, and ≥ college graduate. 

Physical activity was measured using a validated modified Minnesota Leisure-Time 

Activities Questionnaire [24, 25]. 

GOLDN: An interviewer-administered validated dietary history questionnaire (DHQ) 

was developed by the National Cancer Institute to estimate the habitual dietary intakes 

[26]. Education was categorized into 5 levels: grade 8 or less, 1 or more years of high 

school, 1 or more years of trade school, 1 or more years of college, or 1 or more years 

of post college. Physical activity was measured by a questionnaire with questions of 

the number  of hours per day dedicated to different levels (heavy, slight, and 

sedentary) of activity [27]. 

InCHIANTI: The usual dietary intakes were collected by a interviewer-administered 

236-item FFQ. Nutrient data for specific foods were obtained from the Food 

Composition Database for Epidemiological Studies in Italy [28, 29]. Education was 

estimated by the years of school attendance. Physical activity was categorized into 3 

groups: sedentary (completely inactive or with less than 1 h/wk for light-intensity 

activity, light physical activity (with at least 5 h/wk or more of light activity or at least 
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1-2 h/wk moderate activity), and moderate to high physical activity (with at least 5 

h/wk or more of light activity or at least 1-2 h/wk moderate activity).  

MESA: Dietary intakes were collected by the self-administered 120-item Block FFQ, 

which was further modified and validated in non-Hispanic white, non-Hispanic black, 

Hispanic individuals [30], and Asians [31, 32]. Education was classified into 3 groups: 

less than high school, complete high school or equivalent certification, and complete 

college or more. Physical activity was collected by The MESA Typical Week 

Physical Activity Survey (TWPAS), which was adapted from the Cross cultural 

Activity Participation Study [33]. The sum of minutes spent in all activity types was 

multiplied by the metabolic equivalent (MET) level assigned to each activity [34]. 

WGHS: Between 1992 and 1994, dietary intakes were estimated using the 131-item 

Willett semi-quantitative FFQ derived from the National Health Service [35]. 

Physical activity was obtained by multiplying the average time spent per week with 

the metabolic equivalent (MET) values [34].  
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6.1 Summary of the studies: 

This thesis provides innovative evidence for the interplay among genetic variants, 

DNA methylation, and environmental factors for cardiovascular disease (CVD) 

related risk factors. On a genome-wide scale, we found that DNA methylation is not 

only related with genetic variants, but also associated with haplotypes of multiple 

CpG-related SNPs (CGSs). Using a candidate gene-based approach, we identified 

significant interactions between genetic variants and environmental factors to 

modulate CVD related traits, most likely mediated by the observed genotype-

dependent methylation effects. Specifically, we showed that promoter SNPs 

interacted with age to modulate the DNA methylation of APOE, a candidate gene for 

aging, CVD, and Alzheimer’s Disease as well. We also found that the genetic variants 

within the promoter region of IL6, an inflammatory cytokine, are associated with 

methylation of a potentially functional CpG site within that region, which was also 

shown to have a significant association with erythrocyte membrane level of N3 

PUFAs. Finally, the methylation-related SNPs within ABCA1 and APOE locus were 

observed to interact with circulating fatty acids to modulate blood lipids through their 

genotype-dependent methylation mechanisms. Our studies provide evidence that 

epigenetic mechanisms may play a novel role in the observed phenomenon of gene-

by-environment (G×E) interactions, which may have important implications for the 

eventual development of personalized medicine.  
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6.2 Potential role of DNA methylation as one of the molecular 

mechanisms for G×E interactions 

Despite the extensive evidence for G×E interactions, the underlying biological 

mechanisms are still unclear. Our results suggested that DNA methylation is one 

possible mechanisms for G×E interactions, which is consistent with the established 

regulatory role of DNA methylation as the interface between “nature” and “nurture”.  

    DNA methylation has been demonstrated to be determined by the local nucleotide 

sequence. Although 25% of methylation occurs outside of CpG sites in embryonic 

stem cells, most of these non-CG methylation events disappear when the stem cells 

undergo differentiation, leading to the result that almost all of the methylation 

(99.98%) in differentiated mammalian cells occur on the CpG dinucleotides [1]. 

Manipulated insertions of the promoter constructs from genes with various DNA 

methylation patterns into a uniform epigenetically inert locus can recapitulate their 

originally patterns of DNA methylation, demonstrating the deterministic role of the 

genetic sequence and the proteins binding to it in controlling the regulation of DNA 

methylation [2]. Furthermore, the phenomenon of allele-specific methylation (ASM), 

suggested by observed associations between genetic variants and DNA methylation, is 

widespread across the human genome. For example, according to analysis of twin 

pairs and their parents, >35,000 CpG sites were shown to have ASM events [3]. 

Across 16 human pluripotent and adult cell lines, approximately 37% of heterozygous 

SNPs were shown to demonstrate ASM events [4]. With 153 human adult cerebellum 

samples, 736 out of 8590 tested CpG sites were shown to have significant cis 
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associations with 2878 SNPs, while these numbers in trans associations were 12 CpG 

sites with 38 SNPs [5]. The analysis with a three-generation family showed that 8.1% 

of heterozygous SNPs had cis associations with ASM events and the predicted 

methylation levels of CpG sites based on the genotype of those ASM-associated SNPs 

were highly correlated with the actual measured methylation levels in two unrelated 

individuals (R
2
= 0.82 and 0.83) [6].  

    Evidence has been accumulating in support of changes to DNA methylation in 

response to different types of environmental factors. Studies with monozygotic and 

dizygotic twins suggested the potential role of environmental factors play in the 

regulation of DNA methylation [7, 8]. It has been shown that DNA methylation can 

be altered by irritant chemicals such as air pollutants and hair dyes [9-11]. Sun 

exposure was reported to have a tendency to lower DNA methylation on a genome-

wide scale [12]. Smoking has been shown to change DNA methylation of the 

coagulation factor II receptor-like 3 gene (F2RL3) [13] and tumor suppressor genes, 

such as p16 and death-associated protein (DAP) kinase [14]. Famine in humans 

caused by weather or historical events has provided us with the valuable tool of 

natural experiments to explore the effects of environmental factors, particularly 

nutrition, on DNA methylation. The rainy season in rural Gambia presents substantial 

challenges to the nutritional status of the Gambian individuals. Compared to those 

conceived during the nutrition rich season, those individuals who were conceived 

during the rainy season were shown to have higher methylation of genetic regions 

identified as “metastable epialleles”, which were defined as the regions contributing 
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to the dramatic and systemic inter-individual variations in epigenetic regulation [15]. 

Also, the Dutch Hunger Winter at the end of the Second World War provided us with 

unique evidence of nutritionally regulated changes in DNA methylation. Individuals 

who experienced famine prenatally due to in utero exposure to the Dutch Hunger 

Winter demonstrated less DNA methylation of the imprinted gene insulin-like growth 

factor 2 (IGF2) and 15 other cardio-metabolic disease genes compared with their 

unexposed siblings [16, 17]. Longitudinal epidemiology studies found that self-

reported folic acid supplementation during pregnancy was reported to increase 

methylation level of imprinted gene insulin-like growth factor 2 (IGF2) in infants [18, 

19], which was further shown to have inverse associations with birth weight [19]. 

Interventional studies with animals demonstrate the cause-effect relationship between 

different types of nutrients and DNA methylation. Dietary intake of folate and other B 

vitamins during gestational will affect methylation of the agouti viable yellow (A
vy

) 

allele in the mouse offspring [20]. Feeding with a low protein diet during gestational 

in the rat was reported to increase the incidence of type 2 diabetes in the offspring by 

changing the DNA methylation levels in pancreatic islets of hepatocyte nuclear factor 

4 a (Hnf4a), a transcription factor associated with the etiology of type 2 diabetes [21], 

and also to reduce the methylation of peroxisomal proliferator-activated receptor 

alpha (PPAR-α) gene and glucocorticoid receptor (GR) gene in liver [22]. A high-fat 

diet early in gestation was shown to result in global DNA hypomethylation in the 

placenta of female mice [23].  
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Our results consistently indicated that DNA methylation might represent one 

potential regulatory mechanism for the observed G×E interactions. We confirmed the 

genetic contribution to DNA methylation by obtaining at least one SNP-CpG pair 

with significant associations for each of the 7 studied genes in this thesis, including 

APOE, IL6, ABCA1, APOA5, PCSK9, HMGCR and HNF1A. Our genome-wide study 

further suggested that the haplotype of multiple highly linked CpG related SNPs 

(CGSs) were significantly associated with DNA methylation patterns in that linkage 

disequilibrium (LD) block. Additionally, we observed significant interactions between 

these methylation-related SNPs and environmental factors of interest to the current 

study, which are age and circulating fatty acids. For example, we found significant 

interactions for the promoter SNP of APOE, which interacted with age and α-linolenic 

acid (ALA), the promoter SNP of IL6 with eicosapentaenoic acid (EPA) and 

docosahexaenoic acid (DHA), and the promoter SNP of ABCA1 with EPA. These 

interactions were not only observed for the CVD traits but also for the DNA 

methylation measurements of the corresponding genes. Furthermore, the results from 

the correlations between methylation and CVD traits and gene expression were in the 

same direction of the observed genetic associations and interactions. The consistent 

findings for the interplay among genetic variants, DNA methylation, environmental 

factors, CVD traits, and gene expression shown by our study suggest a potential but 

partial mechanistic role of DNA methylation to explain the observed G×E interactions.  

 



 

139 
 

6.3 Implications: 

This thesis provides a model system for how to use observational studies to evaluate 

the hypothesis that epigenetic may represent one of the underlying molecular 

mechanisms for observed gene-by-environment (G×E) interactions. Our approach 

used several methods including bioinformatics prediction, meta-analysis of G×E 

interactions across multiple cohorts, association tests between genetic variants and 

DNA methylation (mQTL), and association analysis between genetic variants and 

gene expression (eQTL).  

With respect to clinical implications, our study provides evidence that may 

eventually facilitate the implementation of genotyping testing to facilitate primary and 

secondary prevention of diseases. Currently, it is virtually impossible to change the 

genotype status of the risk variant one individual carries. In addition, informing the 

patient of his/her genotyping status may in some cases cause anxiety and other 

distress, and the desirability of the routine, clinical use of genotypes for common 

SNPs in the clinical setting of primary or secondary prevention remains controversial. 

APOE is one example, in that the ε4 variant was demonstrated to have a dosage effect 

on the incidence of and on the age of onset of the late-onset Alzheimer’s disease (AD) 

[24]. However, debates persist over whether the genotyping test for APOE ε4 is 

necessary or desirable, because there are no medications or clinical strategies to 

counter the deleterious effect of the ε4 isoforms [25-27]. However, our finding that ε4 

is associated with APOE methylation and expression suggest that the deleterious 
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effects of ε4 might be mitigated by applying appropriate lifestyle-based modifiers that 

reduce the difference in methylation across different APOE isoforms.  

 

6.4 Limitations: 

This thesis does have some limitations which need to be addressed. Firstly, this study 

is based on an observational design, so that a cause-effect relationship cannot be 

established. Although we have observed relationships between SNPs and DNA 

methylation, we can not determine which is the cause and which is the effect. On one 

hand, it is possible that the CpG site formed by the SNPs leads to methylation of this 

site. On the other hand, it is also possible for the DNA methylation event to create or 

disrupt a CpG site by causing mutation at that site. The cause-and-effect relationship 

between DNA methylation and blood lipids is also unclear. However, the effect of N3 

PUFAs on DNA methylation and then on gene expression might be plausible based 

on the fact that most N3 PUFAs comes from dietary/supplement intake and the main 

effects of DNA methylation is changes in gene expression. Secondly, the tissue for 

DNA methylation in our study is the immune cells, which are ideal for the 

measurement of inflammatory markers but not of blood lipids. However, the fact 

plasma lipids are affected, to some degree, by immune cells, i.e. the reverse 

cholesterol pathway by macrophages, may reduce the limitations associated with 

using immune cells rather than hepatic cells. Also, the consistent methylation pattern 
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across different cell types, exemplified by the analysis of APOE locus, mitigates 

limitations related to tissue specificity.  

 

6.5 Future direction: 

The results from this thesis illustrate the need for future mechanistic experiments, 

such as interventional studies and molecular studies, to increase the level of evidence 

supporting our hypothesis that genotype-dependent epigenetic changes are the 

underlying molecular mechanism for the observed G×E interactions. With 

mechanistic experiments, cause-and-effect relationships will be explored and our 

hypothesis of the genotype-specific effects of fatty acids on DNA methylation-gene 

expression-blood lipids can be more conclusively demonstrated.  

 

6.6 Conclusion: 

We found that DNA methylation is related to genetic variants by showing haplotypes 

of multiple CpG related SNPs (CGSs) that were associated with the DNA methylation 

patterns on a genome-wide scale. Our studies with candidate loci related to CVD risk 

factors suggested that genotype-dependent effects on DNA methylation may 

contribute, in part, to the underlying molecular mechanisms for observed G×E 

interactions. Our studies call for further demonstrations with interventional studies 

and molecular mechanistic experiments, with the ultimate goal of providing reliable 
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evidence to advance the development of more personalized approaches to nutrition 

and medical care.  
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Abstract:  

Background and aims  

Lipoprotein lipase (LPL) is a candidate gene for obesity based on its role in 

triglyceride hydrolysis and the partitioning of fatty acids towards storage or oxidation. 

Whether dietary fatty acids modify LPL associated obesity risk is unknown. 

 

Methods and results  

We examined five single nucleotide polymorphisms (SNPs) (rs320, rs2083637, 

rs17411031, rs13702, rs2197089) for potential interaction with dietary fatty acids for 

obesity traits in 1171 participants (333 men and 838 women, aged 45-75 y) of the 

Boston Puerto Rican Health Study (BPRHS). In women, SNP rs320 interacted with 

dietary polyunsaturated fatty acids (PUFA) for body mass index (BMI) (P=0.002) and 

waist circumference (WC) (P=0.001) respectively. Higher intake of PUFA was 

associated with lower BMI and WC in homozygotes of the major allele (TT) (P=0.01 

and 0.005) but not in minor allele carriers (TG and GG). These interactions were 

replicated in an independent population, African American women of the 

Atherosclerosis Risk in Communities (ARIC) study (n=1334).   

 

Conclusion  

Dietary PUFA modulated the association of LPL rs320 with obesity traits in two 

independent populations. These interactions may be relevant to the dietary 

management of obesity, particularly in women. 

 

Key words: 

gene-diet interaction; lipoprotein lipase; polyunsaturated fatty acids; obesity. 

 

Running title: LPL interacts with PUFA for obesity in women 
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Introduction 

 

Obesity in the US has reached an overall prevalence of nearly 34% [1], with greater 

prevalence in some ethnic minorities [2], which might be related to differences in 

genetic background and behavioral factors [3-5]. The investigation of genetic variants 

for obesity in conjunction with behavioral factors, especially diet, may benefit 

development of more specific strategies to ameliorate susceptibility to weight gain.   

 

Lipoprotein lipase (LPL) is a candidate gene for obesity, based on its encoded 

function to absorb fatty acids across tissues[6, 7]. LPL contributes to fat storage in 

adipocytes [8], regulation of thermogenesis in skeletal muscle [9]. However, in spite 

of LPL’s demonstrated role in obesity, relevant association studies with LPL single 

nucleotide polymorphism (SNP) have inconsistent findings and show sex-specific 

differences [10, 11]. 

 

One hypothesis that may account for the inconsistency is that unexamined factors may 

modulate LPL-associated obesity risk. Dietary fat type (e.g., saturated fatty acids 

(SFA), monounsaturated fatty acids (MUFA), and polyunsaturated fatty acids (PUFA)) 

have been evaluated for obesity risk independently of genotype for decades [4]. 

However, it remains to be explored whether intakes of different fatty acids alter 

obesity-related traits in the context of LPL genotype.  

 

Therefore, we aimed to determine whether dietary fatty acids interact with LPL 

variants for obesity traits in a population of multiple ancestries, stratified by sex. We 

also aimed to replicate our findings in an independent population.  
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Methods 

 

Study Populations 

Discovery population: The Boston Puerto Rican Health Study (BPRHS) 

In the BPRHS, there were 1171 participants of Puerto Rican origin, aged 45-75 years, 

living in the Greater Boston, MA metropolitan area, after excluding those with 

missing data and implausible energy intake, defined as <2512 kJ (600 kcal) per day 

or >20093 kJ (4800 kcal) per day. Details for the study have been described 

previously [12]. Fasting blood were collected for biochemical and genetic analyses. 

Anthropometric methods were consistent with techniques used by the National Health 

and Nutrition Examination Surveys. The study protocol was approved by the 

Institutional Review Board at Tufts Medical Center and Tufts University Health 

Sciences Campus. Informed consent was received by all participants or their 

representatives. 

 

Replication population: Atherosclerosis Risk in Communities Study (ARIC) 

Participants of replication study in ARIC included 2186 African American (AA) and 

8689 European American (EA), considering the multiple ancestry nature of the 

BPRHS. ARIC was a multi-center study with participants aged 44-66 years from 

Forsyth County, North Carolina; Jackson, Mississippi; suburban areas of Minneapolis, 

Minnesota; and Washington County, Maryland [13]. Individuals with implausible 

energy intakes, defined as in the BPRHS, were excluded from analysis. Body weight 

was measured using a calibrated scale with subjects in scrub suits without shoes and 

height was measured using a ruler. Waist circumference (WC) at the umbilicus was 

measured using a tape measure. Fasting blood was collected from an antecubital vein 

into a vacuum tube with ethylenediamine tetraacetic acid. Triglycerides and high-

density lipoprotein (HDL) were assayed using enzymatic methods and dextran-

magnesium precipitation respectively [14]. This study was approved by the 

Institutional Review Board at each field center, and the University of North Carolina 

at Chapel Hill. Informed consent was received by all participants or their 

representatives.  

 

SNP Selection, Genotyping and Linkage disequilibrium (LD) analysis 
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Four lipids related SNPs (rs2083637, rs17411031, rs13702, and rs2197089) [15-17], 

and rs320 (common name as HindIII) with inconsistent associations with obesity [10, 

11] were selected as discovery panel tested in BPRHS. Genotyping in BPRHS was 

performed using the ABI TaqMan SNP genotyping system 7900HT (Applied 

Biosystems, Foster City, CA). Hardy-Weinberg equilibrium (HWE) was evaluated by 

Chi-square tests. LD and haplotype was analyzed by HaploView4.2 [18] according to 

1000 Genomes Project. Genotypes of replication SNP rs327 in ARIC was imputed by 

MACH (v1.0.16) [19] with HapMap r22 reference populations, Utah residents with 

Northern and Western European Ancestry (CEU) and Yoruba in Ibadan, Nigeria (YRI) 

based on the genome-wide SNP data obtained by the Affymetrix 6.0 chip (Affymetrix, 

Santa Clara, CA). 

 

Dietary assessment 

The BPRHS used a semi-quantitative food frequency questionnaire (FFQ) [20]. The 

ARIC study used a modified 66-item interviewer-administered FFQ [21]. Dietary 

fatty acids intake were expressed as a percentage of total energy intake. 

 

Population ancestry admixture 

The population admixture of participants in the BPRHS was estimated with reference 

to three ancestral populations including Native American (15%), Southern European 

(57%), and West African (27%), and the major principal component estimated by 

EIGENSTRAT was adjusted in the analysis [22]. The first 10 principal components, 

estimated using Eigensoft, represent admixture for ARIC EAs. Percentage of 

European ancestry for ARIC AAs was estimated based on the reference population of 

CEU using 1350 ancestry informative markers by ANCESTRYMAP [23].  

 

Statistical Analysis 

Analysis of covariance and general linear models were applied to test genetic 

associations and interactions between SNPs and different types of dietary fat intake 

(SFA, MUFA and PUFA) to modulate body mass index (BMI) and WC, assuming an 

additive genetic model and adjusting age, admixture, smoking, drinking, total fat 

intake (interaction test), total energy intake, antilipemic medication, diabetes status, 

hormone replacement therapy (in women), physical activity, and education. Dietary 
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fat intake was analyzed as both continuous and categorical variables, dichotomized by 

the population median, for validation. Log transformation was performed when 

necessary. Data were analyzed using SAS 9.2 (SAS Institute, Inc. Cary, NC). A two-

tailed P-value of <0.02 was considered statistically significant, adjusting for three 

multiple tests introduced by three SNPs reaching HWE. Successful replication was 

considered when the analysis with the same additive model and covariates resulted in 

the significant interactions in the same direction across different populations. Inverse-

variance weighted fixed-effects meta-analyses were conducted using METAL 

(University of Michigan; www.sph.umich.edu/csg/abecasis/metal/) to summarize the 

interactions across populations. 

 

Bioinformatics analysis 

Sequences surrounding the candidate SNP with significant interactions were screened 

via NUBIScan [24], a software evaluated peroxisome proliferator-activated receptors 

response elements (PPREs), for which fatty acids (especially PUFAs) are the primary 

ligand.  

http://www.sph.umich.edu/csg/abecasis/metal/
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Results 

Population characteristics  

Demographic data, anthropometrics, lipids, nutrient intakes, disease status and 

medication use for both the BPRHS and ARIC are presented by sex (Table A.1). 

Women in the BPRHS and in ARIC AAs were characterized for obesity status, using 

the cutoff of BMI ≥ 30 kg/m
2
 for obesity and cutoff of WC ≥ 88 cm in women for 

abdominal obesity. Dietary PUFA contributed 8.5% of energy intake in the BPRHS 

and 5% in ARIC, and it was similar for men and women within each cohort. 

 

Discovery in BPRHS 

Minor allele frequencies (MAF) were greater than 0.25 (Table A.2). Rs2083637 and 

rs17411031 deviated from HWE (P=0.03 and P=0.02) and thus were excluded in the 

following analysis.  

 

Rs320, rs13702, and rs2197089 were not associated with BMI and WC 

(Supplementary Table A.1). Both categorical PUFA (Supplementary Table A.2) 

and continuous PUFA (Figure A.1) showed significant interaction with rs320 for 

BMI (P=0.02 and P=0.002, respectively) and WC (P=0.02 and P=0.001, respectively). 

In homozygotes of the major allele (TT), higher PUFA intake associated with lower 

BMI (P=0.01) and smaller WC (P=0.005) (Figure A.1). However, in carriers of minor 

allele (TG and GG), there were no associations (P>0.1) (Figure A.1). Significance and 

interaction pattern were similar for N6- and N3-PUFA (Supplementary Table A.2). 

Results remained the same after excluding women (n=22) using hormone replacement 

(Data not shown). No significant interactions were observed in men (Figure A.1 and 

Supplementary Table A.2), for SFA or MUFA, or with rs13702 or rs2197089 (data 

not shown). Data reported below apply to the single SNP rs320. 

 

Replication in ARIC 

Rs327 was selected for replication in ARIC because of its close distance to rs320 (459 

bp), the high imputation quality (R
2
=1), and its strong LD with rs320 in CEU, African 

ancestry in the Southwest USA (ASW), and Mexican ancestry in Los Angeles (MXL) 

populations in the 1000 Genomes Project (R
2
>0.8) (Figure A.2). 
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Interaction with continuous PUFA in AA women was significant for WC (P=0.01) 

and approached significance for BMI (P=0.07). Interactions were not significant in 

AA men or EAs (Figure A.2), and similar results were with categorical PUFA 

(Supplementary Figure A.1).  

 

In a meta-analysis of the women from all three populations, rs320/rs327 showed 

significant interaction with continuous PUFA intake for both BMI (P=0.009) and WC 

(P=0.003) (Figure A.2). However, interaction P values were even lower when the 

meta-analysis included only two women population, BPRHS and ARIC AAs 

(P=0.001 for BMI and P=4×10
-5

 for WC). The betas for the interaction term were 

consistently negative in three populations. There were no interactions in men (Figure 

A.2). Analysis with categorical PUFA exhibited similar results (Supplementary 

FigureA. 1). 

 

Bioinformatics analysis 

There was a PPRE approximately 14 kb downstream of rs320 (Figure A.3).  
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Discussion 

In the current study, we identified and replicated significant interactions between 

dietary PUFA intake and LPL rs320 for obesity traits in women. In the homozygosity 

for the major allele (TT), increase in PUFA intake associated with lower BMI and 

WC. Our observed gene-diet interaction may have improved our ability to detect 

dietary effects that are apparent only under certain genotype.  

 

Genetic modulation of dietary associations has been suggested by the studies for 

plasma lipids [25, 26]. TT group showed greater improvement in plasma lipids with 

calorie restriction intervention [25]. Our group also found that TT genotype had a 

greater postprandial lipidemia response following an oral fat load [26]. These may 

suggest that T-carriers are more responsive to diet than G-carriers, which is consistent 

with our findings for PUFA intake. Considering the existence of the PPRE near rs320, 

we hypothesize that the apparently greater responsiveness of T allele to PUFA may 

involve the higher binding affinity to the transcription factor of this allele compared to 

G allele [27]. The anti-obesity effects of PUFA found are consistent with previous 

studies [28], which may be related to decreased adipocyte LPL activity [29], reduced 

triglyceride storage and less fat deposition.  

 

Our sex-specific finding is consistent with previous study [7], and may be due to the 

sex-specific LPL response. LPL expression in muscle was 160% higher in women 

than men [6]. Our finding of null genetic association with obesity is consistent with a 

US study [11] not a French one [10], which may further support our hypothesis of 

gene-diet interaction due to potential differences in dietary pattern. 

 

Limitations include the cross-sectional design and the absence of adipose LPL 

expression measurement. The variable ancestral admixtures and high prevalence of 

obesity in both minority populations (BPRHS and ARIC AAs) restricted our study 

from drawing conclusions about the relative contributions of genetic background, 

behavioral and socio-economic factors to the observed interactions. As our results are 

preliminary, additional studies are desirable.  
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In summary, we detected a significant interaction between LPL rs320 and dietary 

PUFA for obesity-related outcomes in women, and these findings were strengthened 

by replication in a second, independent population. Our observations may be relevant 

to the nutritional management of obesity in women.   
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Tables 

Table A.1. Participant characteristics in the BPRHS and ARIC, by sex
a
.  

  Discovery   Replication 

BPRHS  ARIC African American ARIC European Americans 

Men Women  Men Women Men Women 

(n=333) (n=838)   (n=852) (n=1334) (n=4170) (n=4519) 

General Characteristics 

    Age, year 57 (8) 58 (7)  53.92(6) 53.2(6) 54.66(6) 53.9(6) 

    Current smoker, n 111 (33%) 172 (21%)  310(36%) 335(25%) 1009(24%) 1142(25%) 

    Current drinker, n 158 (47%) 290 (35%)  423(50%) 280(21%) 2961(71%) 2818(62%) 

Anthropometric measures 

     BMI, kg/m2 29.6 (5.1) 32.9 (7.0)  28(4.8) 30.7(6.6) 27.4(4.0) 26.5(5.4) 

     WC, cm 102 (15) 102 (16)  98(13) 100(16) 100(10) 93(15) 

Lipids 

     Triglycerides, mmol/l 1.66 (1.77) 1.55 (1.63)  1.4(1.25) 1.24(0.74) 1.66(1.13) 1.45(0.93) 

     Total cholesterol, mmol/l 4.47 (1.14) 4.87 (1.05)  5.47(1.11) 5.62(1.16) 5.45(0.99) 5.64(1.1) 

     HDL cholesterol, mmol/l 1.03 (0.31) 1.21 (0.31)  1.29(0.42) 1.5(0.44) 1.11(0.32) 1.49(0.44) 

     LDL cholesterol, mmol/l 2.57 (0.91) 2.86 (0.89)  3.57(1.06) 3.57(1.13) 3.61(0.91) 3.49(1.02) 

Dietary Intake 

    Total energy, kcal/d 2483 (883) 2044 (875)  1732(657) 1514(569) 1799(652) 1515(522) 

    Carbohydrate, % total energy/d 48.9 (7.5) 51.5 (7.7)  48.5(9.1) 50.5(9.6) 47.3(9.1) 49.5(9.3) 

    Protein, % total energy/d 16.8 (2.9) 17.2 (3.5)  17.2(3.9) 18.7(4.5) 17.1(3.7) 18.5(4.2) 

    Total fat, % total energy/d 32.9 (5.7) 31.7 (5.5)  32.0(6.3) 32.1(6.5) 33.6(6.8) 32.8(6.8) 

    SFA, % total energy/d 10.1 (2.5) 9.6 (2.3)  11.4(2.7) 11.4(2.7) 12.4(3.0) 12.1(3.1) 

    MUFA, % total energy/d 11.4 (2.1) 11.0 (2.1)  12.6(2.8) 12.5(2.9) 13.0(3.0) 12.4(3.0) 

    PUFA, % total energy/d 8.6 (2.0) 8.5 (2.0)  4.7(1.2) 4.9(1.3) 5.1(1.5) 5.1(1.5) 

    Cholesterol, mg/d 377 (191) 283 (162)  312(162) 250(124) 269(139) 223(104) 

Disease and medication 

    Have diabetes, n 137 (41%) 331 (40%)  156(18%) 256(19%) 405(10%) 334(7%) 

    Take antilipemic medication, n 133 (40%) 343 (41%)  6(1%) 7(1%) 84(2%) 87(2%) 

    Take anti-depressants, n 84 (25%) 323 (39%)  0 (0%) 0 (0%) 0 (0%) 0 (0%) 

    Take hormone replacement therapy in women, n 0 (0%) 22 (3%)   0 (0%) 211(16%) 0 (0%) 984(22%) 

aData are means (standard deviation) or n (%) 
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Table A.2. Minor allele frequency (MAF) of LPL SNPs in the BPRHS
a
.  

  Men Women P
b
 

rs320 MAF 0.29 0.27 0.08 

TT 154 418  

TG 135 332  

GG 22 50  

rs2083637 MAF 0.28 0.24 0.03 

AA 166 454  

AG 131 334  

GG 25 32  

rs17411031 MAF 0.28 0.24 0.02 

CC 162 446  

CG 130 332  

GG 24 31  

rs13702 MAF 0.36 0.35 0.70 

TT 125 334  

TC 142 370  

CC 41 93  

rs2197089 MAF 0.39 0.41 0.25 

AA 123 286  

AG 149 390  

GG 50 140   

a
Data are n;  

b
P: P value for Hardy-Weinberg Equilibrium testing. 
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Supplementary Table A.1. Obesity traits by genotype and gender in BPRHS
a
.  

Anthropometric 

measures 

SNP Genotype P
b
 

BMI, kg/m
2
 rs320 TT TG GG 

     men 29.6(0.4) 29.7(0.4) 29.8(1.0) 0.99 

    women 32.9(0.3) 32.7(0.4) 34.1(0.9) 0.4 

rs13702 TT TC CC 

     men 29.7(0.4) 29.5(0.4) 30.1(0.8) 0.81 

    women 32.8(0.4) 32.8(0.3) 32.9(0.7) 0.99 

rs2197089 AA AG GG 

     men 30.3(0.4) 29.1(0.4) 29.4(0.7) 0.12 

    women 32.9(0.4) 32.8(0.3) 33.0(0.6) 0.99 

     

 Waist 

circumference, 

cm 

rs320 TT TG GG 

     men 101.8(1.1) 102.8(1.2) 100.2(3.0) 0.64 

    women 101.3(0.7) 101.8(0.8) 103.8(2.1) 0.5 

rs13702 TT TC CC 

     men 101.5(1.2) 102.7(1.1) 101.8(2.1) 0.74 

    women 101.1(0.8) 101.8(0.7) 100.7(1.5) 0.73 

rs2197089 AA AG GG 

     men 102.9(1.2) 101.4(1.1) 101.2(1.9) 0.62 

    women 101.3(0.9) 101.6(0.7) 102.1(1.3) 0.85 

a
Data are means (standard error); 

b
P: P value for genetic association between SNPs and anthropometric traits 

adjusting age, admixture, smoking, drinking, total energy intake, diabetes status, 

antilipemic medication, hormone replacement therapy in women, physical activity, 

and education. 
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Supplementary Table A.2. Discovery of categorical interaction between rs320 and dietary PUFAs for obesity traits in BPRHS by 

sex
a
.  

      Women Men 

LPL rs320 TT TG GG 

P1
b
 

TT TG GG 

P1
b
 (n=418) (n=332) (n=50) (n=154) (n=135) (n=22) 

PUFA 

Intake,  

% of total 

energy 

intake 

<8.6 BMI, 

 

kg/m
2
 

33.6(0.5) 32.3(0.6) 32.3(1.3) 0.02 30.4(0.6) 29.9(0.6) 30.8(2.1) 0.86 

≥8.6 32.2(0.5) 33.3(0.6) 35.0(1.6)  29.0(0.6) 29.3(0.6) 29.3(2.1)  

P2
c
 0.06 0.26 0.27   0.13 0.57 0.68   

<8.6 WC, 

cm 

103.3(1.1) 102.0(1.3) 101.2(2.9) 0.02 103.9(1.6) 102.7(1.9) 100.6(4.6) 0.52 

≥8.6 99.6(1.0) 101.5(1.4) 104.3(3.6)  100.1(1.5) 102.5(1.96) 102.1(4.6)  

P2
c
 0.02 0.82 0.56   0.11 0.93 0.85   

N6-PUFA 

Intake, % 

of total 

energy 

intake 

<7.9 BMI, 

 

kg/m
2
 

33.5(0.5) 32.3(0.6) 32.7(1.3) 0.04 30.3(0.6) 29.7(0.6) 30.8(2.1) 0.81 

≥7.9 32.3(0.5) 33.3(0.6) 34.3(1.5)  29.2(0.6) 29.5(0.6) 29.3(2.1)  

P2
c
 0.10 0.26 0.47   0.22 0.85 0.68   

<7.9 WC, 

cm 

102.8(1.0) 101.9(1.3) 101.9(2.8) 0.06 103.7(1.6)\ 102.3(1.9) 100.6(4.6) 0.46 

≥7.9 100.0(1.1) 101.7(1.4) 103.2(3.3)  100.3(1.5) 103.0(1.9) 102.1(4.6)  

P2
c
 0.08 0.9 0.8   0.16 0.81 0.85   

N3-PUFA 

Intake, % 

of total 

energy 

intake 

<0.7 BMI, 

 

kg/m
2
 

32.9(0.5) 33.0(0.5) 30.4(1.6) 0.05 30.1(0.6) 29.7(0.6) 30.1(1.6) 0.83 

≥0.7 32.9(0.5) 32.4(0.5) 35.4(1.2)  29.1(0.6) 29.5(0.6) 30.0(2.2)  

P2
c
 0.99 0.43 0.03   0.29 0.78 0.97   

<0.7 WC, 

cm 

102.5(1.1) 102.6(1.2) 97.9(3.5) 0.03 102.6(1.5) 101.9(1.9) 100.3(3.4) 0.43 

≥0.7 100.5(1.0) 101.0(1.3) 105.6(2.7)  100.9(1.6) 103.3(1.9) 103.2(4.7)  

P2
c
 0.19 0.40 0.13   0.48 0.62 0.65   

a
Data are means (standard error); 

b
P1: P for interaction between diet and SNP adjusting age, sex, physical activity, admixture, smoking, drinking, total energy intake, 

total fat intake, diabetes status, antilipemic medication, hormone replacement therapy in women, and education; 
c
P2: P for trend for dietary intake in each genotype group adjusting same covariates; 
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Figures 

 

Figure A.1 Discovery of continuous interaction between rs320 and dietary PUFA intake for obesity traits in the 

BPRHS, by sex. Predicted BMI (A for women, B for men) and WC (C for women, D for men) by rs320 genotype 

were plotted against continuous dietary PUFA adjusted for age, admixture, smoking, drinking, total energy intake, 

total fat intake, diabetes status, antilipemic medication, hormone replacement therapy in women, physical activity, and 

education. P values indicate the statistical significance of the adjusted interaction term and adjusted regression 

coefficients in the regression line corresponding to three genotype groups of rs320 (TT, TG, and GG).  
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Figure A.2 Replication and meta-analysis of continuous interaction between rs320/rs327 and dietary PUFA 

intake for obesity traits by sex. LD correlation (100×R
2
 value in diamond), haplotypes and corresponding 

frequencies of rs320 and replication SNP rs327 in 1000 Genomes CEU (A), ASW (B) and MXL (C) are presented. 

Forest plots of this continuous interactions modulating BMI (left) and WC (right) in women (D) and men (E) are 

presented. The estimates represent the difference in the magnitude of the PUFA association (per +1-unit intake of 

PUFA) with BMI or WC per copy of the T allele of rs320/rs327, adjusting for age, admixture, smoking, drinking, total 

energy intake, total fat intake, diabetes status, antilipemic medication, hormone replacement therapy in women, 

physical activity, and education. Filled square and horizontal line represent the estimate and 95% CI for each 

population, and the filled diamond represent the summary estimate and its 95% CI. 
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Figure A.3 Genomic structure of LPL locus. The gene is transcribed as indicated by the large horizontal arrow. Exons 

are the larger rectangular black boxes. 
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Supplementary Figure A.1 Forest plots of categorical interactions between rs320/rs327 and dietary PUFA intake 

for obesity traits, by women (A) and men (B). The estimates represent the difference in the magnitude of the PUFA 

association (higher than population median vs. lower than population median) with BMI or WC per copy of the T allele of 

rs320/rs327, adjusting for age, admixture, smoking, drinking, total energy intake, total fat intake, diabetes status, 

antilipemic medication, hormone replacement therapy in women, physical activity, and education. Filled square and 

horizontal line represent the estimate and 95% CI for each population, and the filled diamond represent the summary 

estimate and its 95% CI. 

 

 


