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1. Introduction

Quantum computation has attracted interest in recent years because it appears to

violate the strong form of the Church-Turing thesis; quantum computers seem to be

fundamentally more powerful than any possible classical computer [1]. In 1994 Peter

Shor published efficient quantum algorithms for the prime factorization of integers

and the calculation of discrete logarithms modulo arbitrary primes [2]. Lov Grover’s

1995 introduction of the quantum search algorithm provided a polynomial speedup for

unstructured searches [3]. As early as 1982 Richard Feynman pointed out the inherent

difficulties in simulating quantum systems with classical processors and suggested the

possibility that the use of quantum information processing could produce exponential

speedups in such simulations [4]. Subsequently efficient quantum algorithms for

performing simulations of physical systems were developed [5, 6, 7, 8, 9, 10, 11],

vindicating Feynman’s prediction and further motivating theoretical and experimental

work towards realizing quantum computation.

In this paper we focus on the quantum circuit model of quantum computation [12].

In this setting a quantum computation is a unitary transformation applied to n ideal

qubits (we ignore decoherence throughout). Given the irrelevance of global phases the

set of all such transformations is the special unitary group SU(2n). To represent an

element of SU(2n) by a circuit we must specify a fixed set of elementary gates which

act on a fixed number of qubits. A typical choice is the controlled-NOT (CNOT) and

arbitrary one-qubit gates. The length of a circuit is the number of elementary gates

which it contains, however, because of the relative difficulty of multi-qubit operations

we shall only consider the number of CNOT gates in a circuit. There are several means

of physically implementing a quantum computation [13, 14, 15, 16, 17, 18]. One qubit

local operations and a few two qubit operations, such as the controlled-NOT (CNOT)

gate have been experimentally implemented [19, 20, 21, 22, 23, 24].

The set of all allowed transformations for a quantum computer form the group

SU(2n) and a generic element of SU(2n) requires a circuit of length O(4n) gates.

Specific transformations corresponding to efficient quantum algorithms are of particular

interest. A quantum algorithm specifies a circuit family, with a circuit defined for each

value of n. For a quantum algorithm to be efficient each of these circuits must be

composed of a number of operations bounded above by a polynomial in n. Each of

these operations must involve a subset of the n qubits with size bounded above by a

polynomial in the logarithm of n. Some algorithms, for example the quantum Fourier

transform, naturally decompose into elementary gates acting on qubits [25]. In other

cases, for example generic quantum Fourier transforms of functions on groups other

than Z/(2nZ) [26, 27], and in application of phase estimation to problems of quantum

simulation [10, 8], bounded size operations arise which do not naturally factor into

elementary gates. Before such quantum algorithms may be implemented experimentally

one is therefore faced with a problem of quantum compilation - given a set of unitary

operators of fixed size and an elementary gate set, constructively produce the quantum
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circuit realizing the operators.

It was shown by construction in 1995 that the set of one qubit operations and the

CNOT are universal: any unitary operation on any number of qubits can be realized as

a circuit over these gates. However, the number of CNOT gates required for n qubits

was of order n34n [28]. Since 1995 a number of advances have been made towards the

CNOT optimization of universal quantum circuits. We divide these into three categories:

circuit optimization, Lie algebra decompositions, and explicit algorithms.

Knill proved that the asymptotic CNOT cost of universal quantum circuits could

be reduced by a factor of n2 to O(n4n) [29]. In 2004 Shende, Markov and Bullock proved

the highest known lower bound on asymptotic CNOT cost, ⌈1
4
(4n − 3n − 1)⌉ [30], and

Vartiainen, Möttönen, and Salomaa simplified the best existing circuit using Gray codes

to achieve for the first time a leading order CNOT cost of O(4n) (in fact, for large n, the

cost was approximately 8.7 × 4n), a multiplicative factor away from the highest known

lower bound [31]. Later that year, the same authors, along with Bergholm, presented

a decomposition based on the cosine-sine matrix decomposition (CSD) which produced

asymptotic behavior scaling as 4n − 2n+1 [32]. Vatan and Williams published a three

CNOT universal two qubit gate along with a proof that fewer CNOTs could never

achieve universality [33], and proposed a 40 CNOT universal three qubit gate which

was, at the time, the best known [34]. The current best known circuit decomposition

applicable to systems of more than two qubits was introduced by Shende, Bullock

and Markov. Using intuition drawn from the Shannon decomposition of classical logic

circuit design, along with the application of some circuit identities, Shende, Bullock and

Markov have designed a universal circuit requiring 20 CNOTs in the three qubit case

and 23
48

4n − 3
2
2n + 4

3
CNOTs asymptotically [35]. This decomposition is known as the

Quantum Shannon Decomposition (QSD), by analogy with the Shannon decomposition

of classical circuit design, and brings the upper bound on asymptotic CNOT cost to

within a factor of two of the highest known lower bound while halving the cost of

implementing a general three qubit gate to 20 CNOTs.

The second area of research is the exploration of the various ways of decomposing

the Lie algebra of the special unitary group. Essentially all of the work in this

area has made use of the Cartan decomposition. In the first part of the twentieth

century Cartan proved that (up to conjugacy) there exist only three types of Cartan

decomposition on the unitary lie algebra, AI-III [36, 37]. The CNOT optimal two

qubit circuit of Vatan and Williams [33] is, as described in detail below, based on a

type AI Cartan decomposition. Khaneja and Glaser proposed a scheme based on a

Cartan decomposition of su(2n) (now known as the Khaneja Glaser Decomposition,

or KGD) which lends itself to efficient recursive circuit decompositions [38], and,

working with Brockett, they showed that this scheme was time optimal for NMR based

implementations of quantum computation [39]. Bullock identified the Khaneja Glaser

Decomposition, as well as the CSD, as type AIII Cartan decompositions and thereby

established an equivalence between the two [40]. The KGD was used by Vatan and

Williams to produce their efficient two and three qubit circuits [34, 33]. Bullock and
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Brennen and more recently Dagli, D’Alessandro and Smith have used type AI and

AII decompositions, including the Concurrence Canonical Decomposition (CCD) and

the Odd-Even Decomposition (OED), to study entanglement dynamics in quantum

circuits [41, 42].

In order to make practical use of a CNOT optimized quantum circuit or a novel

Lie algebra decomposition it is necessary to have an algorithm which can extract the

parameters which appear in the decomposition from an arbitrary unitary operation.

Sousa and Ramos provided an algorithm based on the generalized singular value

decomposition for computing the parameters in a CNOT optimized two qubit circuit (the

parameters for Vatan and Williams circuit can be extracted from their algorithm with

a little algebra, and other equivalent circuits can be computed with a similar amount

effort) [43]. Just as Vatan and Williams’ work on small numbers of qubits does not

generalize to larger operators, however, Sousa and Ramos’ algorithm does not generalize

beyond two qubits. Earp and Pachos provided a constructive algorithm to perform a

type AIII Cartan decomposition of an arbitrary n qubit operator (they use the Khaneja

Glaser Decomposition specifically, but their algorithm can be modified to implement

other forms of the AIII decomposition) [44]. Earp and Pachos’ algorithm relies on

numerical optimization and a truncation of the Baker-Campbell-Hausdorff formula.

Nakajima, Kawano and Sekigawa published the first algorithm to compute Cartan

decompositions of the unitary group making explicit use of Cartan involutions [45];

their algorithm computes parameters for circuits composed of uniformly controlled

operations, similar to the circuits produced by CSD based schemes. Their algorithm

requires 4n − 2n−1 CNOT gates asymptotically. In the three-qubit case this number

can be reduced by taking advantage of the known CNOT-optimized two qubit circuit

developed by Vatan and Williams to produce a 44 CNOT universal three qubit circuit

(see Fig. 2). Since a lower bound of 1
4
(4n − 3n− 1) has been proven on the asymptotic

CNOT cost of arbitrary n-qubit operations with a lower bound of 14 CNOTs in the

three qubit case [30], this efficiency cannot be improved by more than a factor of

four. Circuits produced by Nakajima, Kawano and Sekigawa’s algorithm are a factor of

two longer than circuits obtained from the Quantum Shannon Decomposition (QSD).

However, the QSD lacks a constructive Lie algebra based factoring algorithm in the

published literature so far. It is to this issue we turn in the remainder of the paper.

We first give some mathematical background introducing important definitions

and theorems which will be used later in the work. We then discuss the important

special cases of one and two qubit operations, and provide Cartan involution based

algorithms for extracting parameters for CNOT optimal quantum circuits from arbitrary

one and two qubit unitary operations. We then place the QSD, the best known circuit

decomposition in terms of CNOT cost, into a Lie algebraic context by showing it to be

an alternating series of Cartan decompositions. We define the Cartan involutions which

correspond to these decompositions, and we show that these involutions can be used

recursively to obtain the QSD for unitary operators on any number of qubits.
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2. Mathematical Background

In the interest of making our presentation more self-contained, we briefly review some

basic definitions which will be important throughout this work. For a fuller presentation

we refer the reader to [46, 47]. Throughout, we use [ab] to denote the Lie bracket in

general, and the notation [a, b] to denote the Lie bracket for matrix algebras where it is

the commutator [a, b] = ab − ba.

Definition 1: If a subalgebra I of a Lie algebra g satisfies the condition that

[xy] ∈ I for all x ∈ g, y ∈ I then I is called an ideal in g.

Example 1: Clearly 0 and g are trivial ideals of g. An important example of an

ideal is the derived algebra of g, denoted [gg], which consists of all linear combinations

of brackets [xy], with x, y ∈ g.

Definition 2: A non-abelian Lie algebra U (i.e. [UU] 6= 0) in which the only ideals

are 0 and all of U is called simple. Observe that since the derived algebra is an ideal, for

any simple Lie algebra S the derived algebra is equal to the entire algebra: [SS] = S.

We may define a sequence of ideals, the derived series of an algebra A, as follows:

A(0) = A, A(1) = [AA], A(2) = [A(1)A(1)], ..., A(i) = [A(i−1)A(i−1)], ...

If A(n) = 0 for some n we call A solvable. Observe that all abelian Lie algebras are

solvable, while all simple Lie algebras are nonsolvable. We shall simply state the fact

that every Lie algebra contains a unique maximal solvable ideal (maximal in the sense

that it is contained in no larger solvable ideal), which is referred to as the radical of

the algebra. If L is a non-zero Lie algebra and Rad L = 0, we call L semi-simple. This

condition for the semi-simplicity of a Lie algebra is equivalent to the condition that the

algebra is the direct sum of simple Lie algebras. Most of the Lie algebras which occur

in physics are semi-simple, and there exists a very rich and well developed structure

theory of semi-simple Lie algebras which we shall exploit throughout the remainder of

this work. The essential structure theorem which lies behind both the CSD, the KGD,

and as we shall show later the QSD, is the Cartan decomposition.

Definition 3: A Cartan Decomposition of a real semi-simple Lie algebra g is a

decomposition g = m ⊕ k where m = k⊥, for which k and m satisfy the commutation

relations:

[k, k] ⊂ k (1)

[m, k] = m (2)

[m, m] ⊂ k (3)

A few further features of the Cartan decomposition are essential.
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Definition 4: Consider a semi-simple Lie algebra with Cartan decomposition

g = m ⊕ k and a subalgebra h of g contained in m. Because [m, m] ⊂ k, h must

be Abelian. We refer to a maximal Abelian subalgebra contained in m as a Cartan

subalgebra of g and k.

Definition 5: The Lie group G acts on its Lie algebra g through a conjugation,

known as the adjoint action, AdG : g → g defined by

AdUX = U †XU (4)

for u ∈ G and X ∈ g, and for K = exp(k) we define the Adjoint orbit of X to be

AdKX =
⋃

k∈K

AdkX (5)

Any two Cartan subalgebras h and h′ are related to one another through the adjoint

action of the group G on its Lie algebra g. With these definitions, we now state

Theorem 1: For any two maximal Abelian subalgebras h and h′ in m there is an

element k ∈ K such that Adk(h) = h′. Furthermore, the adjoint orbit of h is equal to

m, i.e.

m =
⋃

k∈K

Adkh (6)

Finally, we come to the key definition in this paper:

Definition 6: Given a semisimple Lie algebra g with Cartan decomposition

g = m ⊕ k and a Cartan subalgebra h, let A = exp(h) and K = exp(k), then G = KAK

is called a (global) Cartan decomposition of the semi-simple Lie group G.

The theorem which establishes the existence of such a decomposition for any semi-

simple Lie group is proved in [47, 46, 48]. The G = KAK structure has been used

widely in work on quantum circuit decompositions in the past, most notably in Khaneja

and Glaser’s work, as well as in CSD based circuit designs (as explained by Bullock [40])

and in subsequent work based on these decompositions (cf. e.g. [38, 32, 34, 42]). The

task of computing the Cartan factors for a specific unitary matrix is greatly facilitated

by the existence of Cartan involutions.

Definition 7: A Cartan involution, denoted θ, is a non-identity automorphism on

a Lie algebra u such that θ2 is the identity, and the global Cartan involution has the

equivalent action on U = exp(u) with the property that

θ(g) =

{
g g ∈ k

−g g ∈ m
, Θ(G) =

{
G G ∈ exp(k)

G† G ∈ exp(m)
(7)

In the case of su(n) there are only three classes of Cartan decomposition, denoted

AI, AII, and AIII. The k subalgebras of su(n) are isomorphic to so(n), sp(n
2
), and

s[u(p) ⊕ u(q)] for any p + q = n for AI, AII, and AIII decompositions, respectively
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(AII only exists for unitary groups acting on an even number of dimensions, a common

situation in quantum information where the state-spaces of n-qubit registers have

dimension 2n) [42]. In this work we are particularly concerned with decompositions

of type AI and AIII because in certain important cases there are straightforward

and efficient means of physically implementing real orthogonal or direct sum unitary

operators. Since we are concerned in this work only with the unitary group, whose

elements satisfy the condition U−1 = U †, we may exploit the Cartan involution to

factor matrices.

Theorem 2: For any G ∈ SU(2n) with Cartan decomposition G = KM , K ∈
exp(k), M ∈ exp(m), M2 is uniquely determined by M2 = Θ(G†)G.

Proof: Θ(G†)G = Θ(M †K†)KM = Θ(M †)Θ(K†)KM = MK†KM = M2. �

A KAK type decomposition of the special unitary group is desirable because

there is a considerable amount of freedom in selecting the k subalgebra and a Cartan

subalgebra h, and with appropriate selection of k and h the factors returned for an

arbitrary unitary operator are of a form which may readily be translated into physically

realizable quantum gate sequences. Indeed, the Khaneja-Glaser Decomposition has

been shown to be time optimal for NMR quantum computing, as compared to other

published decompositions [39]. The existence of this decomposition is of no practical

use, however, without an algorithm for explicitly calculating the factors K1, K2 and A

for a given specific unitary matrix.

Notation When discussing the generators of the Lie algebras of multi-qubit

operator groups we will use a streamlined notation. We define ZI = σz⊗1, IX = 1⊗σx,

ZY = σz ⊗ σy and so on, where σx, σy and σz are the familiar Pauli spin matrices

σx =

(
0 1

1 0

)
, σy =

(
0 −i

i 0

)
, σz =

(
1 0

0 −1

)
.

Additionally, we define X(n) to be a Pauli-x (likewise y and z) acting on the nth qubit,

i.e. Z(3) = IIZ.

3. Special Cases: One and Two Qubits

3.1. One qubit factoring: Euler Angle decomposition of SU(2) as a Cartan

Decomposition

We now provide a simple, illustrative example of a Cartan decomposition and an

involution based algorithm for converting an arbitrary one qubit unitary operator into

a Cartan inspired circuit. This is the simplest possible case of a Cartan decomposition

of a unitary group, however, the factoring of multi-qubit gates inevitably reduces in the
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end to a series of one-qubit gates which must themselves be decomposed. The structure

of the algorithm for this simple example is identical to the more involved cases to follow.

Definition: The Lie algebra su(2) is generated by the Pauli spin matrices. The

decomposition su(2) = k⊕ m where k = span
R
i{Y } and m = span

R
i{X, Z} satisfies the

criteria to be a Cartan decomposition. Furthermore, either span
R
i{X} or span

R
i{Z}

is a maximally abelian subalgebra of su(2) contained in m. Thus the decomposition of

SU(2) given by U = eiAY eiBZeiCY is a Cartan decomposition. Using the fact that SU(2)

is the double cover of SO(3), we recognize this Cartan decomposition as the Euler angle

decomposition of three dimensional rotations. We now explicitly calculate the Euler

angle decomposition of an arbitrary single qubit unitary using a Cartan involution.

The Cartan involution corresponding to our chosen Cartan decomposition (k =

span
R
i{Y }, m = span

R
i{X, Z} and h = span

R
i{Z}) is θ(u) = Y uY, Θ(U) = Y UY . We

compute the Cartan KAK decomposition of an arbitrary G ∈ SU(2) as follows

1. We exploit Theorem 2 to calculate M2 = Y G†Y G

2. Diagonalize M2 = PDP †. Note that as a diagonal element of SU(2), D must be of

the form eiαZ , i.e. D ∈ exp(h), and, furthermore, Theorem 1 implies that P ∈ exp(k).

3. We now have M = PD1/2P † and we may find K = GM †.

4. This constitutes a complete decomposition of G into the form eiAY eiBZeiCY : G =

KPD1/2P †, and it is trivial to extract the angles A, B and C from the matrix forms of

these operators.

3.2. Two qubit factoring from a Cartan decomposition.

The task of factoring two qubit operators is facilitated by several unique properties of

SU(4). Firstly, SO(4) is the Lie group corresponding to the k subalgebra of su(4) under

a type AI involution. SO(4) and the group of local operations acting on two qubits

separately, SU(2) ⊗ SU(2), share a simply connected covering group, Spin(4). In fact,

elements of SO(4) are mapped uniquely onto elements of SU(2) ⊗ SU(2) by changing

to the “magic basis” of Bell states through conjugation by the matrix [33]:

B =
1√
2




1 i 0 0

0 0 i 1

0 0 i −1

1 −i 0 0


 . (8)

There is no equivalent connection between SO(2n) and SU(2n−1)⊗SU(2n−1) for n > 2.

As a result of this close connection between the type AI Cartan decomposition of SU(4)

and the group of local operations (which may be implemented without the use of CNOT
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gates) it is possible to construct a universal 2 qubit circuit requiring only 3 CNOT gates

in the worst case (see Figure 1) [33, 49, 43, 50].

Definition: The involution for type AI Cartan decompositions of su(N) is given

by

θ(u) = −uT for u ∈ su(N), Θ(U) = (U−1)T = U∗ for U ∈ SU(N). (9)

The involution given by (9) fixes a k-subalgebra corresponding to so(4), k =

span
R
i{IY, XY, ZY, Y I, Y X, Y X}, and the diagonal elements of m, i.e. h =

span
R
i{IZ, ZI, ZZ} constitute a Cartan subalgebra. Furthermore, as discussed in the

introduction, a transformation to the basis of Bell states (the “magic basis”) maps

this k subalgebra onto su(2) ⊕ su(2) and also maps the maximal abelian subalgebra of

diagonal matrices onto the subalgebra chosen by both Khaneja and Glaser and Vatan

and Williams, h′ = span
R
i{XX, Y Y, ZZ}. As a result, we may use the Cartan involution

of Equation (9) and matrix diagonalization to compute the parameters necessary for

Vatan and Williams two-qubit CNOT optimal circuit.

The parameters for an arbitrary two qubit unitary U may be calculated as follows:

1. We define a new operator U ′ = B†UB where B is defined in Equation 8.

2. Compute M2 = Θ(U ′†)U ′ = (U ′†)∗U ′ = U ′T U ′, which is in the exponentiation of m.

3. Diagonalize: M2 = PDP † where D ∈ exp(h) and P ∈ SO(4).

4. Find D
1

2 and hence K ′ = U ′PD− 1

2 P †.

5. K ′P and P † are both elements of SO(4), so K1 = BK ′PB† and K2 = BP †B† ∈
SU(2) ⊗ SU(2) and A = BD

1

2 B† ∈ exp(h′). Hence

K1AK2 = BK ′PB†BD
1

2 B†BP †B† = BK ′PD
1

2 P †B† = BU ′B† = U (10)

is a Cartan decomposition of U of the type used by Vatan and Williams.

6. Simple algebraic manipulations of D
1

2 yield the parameters α, β andγ which appear

in the center portion of the circuit in Figure 6 of [33] and the partial trace may be used

to separate K1 and K2 into the local operations of which they are composed, which may

then be decomposed as described in the previous section.

4. The QSD from Cartan Involutions

In this Section we give a Cartan decomposition and constructive algorithm for obtaining

the QSD (recall that it is not possible to exceed the QSD’s efficiency by even a

factor of two for any number of qubits). This algorithm is constructive and produces
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UA
�������� Rz(2γ − π

2
) • �������� Rz(−π

2
) VA

UB Rz(
π
2
) • Ry(π

2
− 2α) �������� Ry(2β − π

2
) • VB

Figure 1. The CNOT optimized universal two qubit circuit; UA, UB, VA, andVB may

be decomposed into 3 single qubit rotations each by the Euler angle decomposition

given above, and VA and UB may absorb the z-rotations preceding and following them

respectively yielding a circuit consisting of 3 CNOT gates and 15 single qubit rotations.

circuits which are less than half as long as the constructive algorithms of Nakajima,

Kawano and Sekigawa [44, 45]. The principle difference between those algorithms and

the QSD is that they proceed by reducing an n-qubit circuit to a circuit involving

uniformly controlled n − 1 qubit gates. These uniformly controlled gates are then

reduced to controlled and uncontrolled n− 1 qubit gates. The uncontrolled n− 1 qubit

gates, and the controlled n − 1 qubit gates are then factored again using the Cartan

decomposition. However, all gates obtained by this decomposition must be controlled,

leading to a doubling of the number of CNOTs over the best known decompositions.

This problem arises because only part of the decomposition is handled at the Lie algebra

level - after the first decomposition circuit identities are introduced before the Cartan

decomposition is applied again. In what follows we take the Lie algebraic point of

view throughout: the uniformly controlled operations are treated as a Lie-subgroup,

and a Cartan decomposition of the corresponding Lie-subalgebra is obtained. This

Cartan decomposition results in uncontrolled n−1 qubit operations which remain to be

factored, and so the first part of the algorithm of Nakajima, Kawano and Sekigawa can be

applied again. The resulting algorithm is an alternating pair of Cartan decompositions,

each of which has a simple Cartan involution which enables the factors to be obtained

explicitly. Inspection of the resulting procedure reveals precisely the QSD of [35] and so

this algorithm gives a Cartan decomposition based derivation of the QSD and a Cartan

involution based explicit algorithm for obtaining the QSD.

Because every other step in our recursive procedure is identical to the first step

of Nakajima, Kawano and Sekigawa’s algorithm, we first define the correponding

components k and m of the Cartan decomposition of SU(2n), and the Cartan subalgebra

h. The k-subalgebra is of type AIII: the direct sum of two lower dimensional unitary

Lie algebras k = s[u(p) ⊕ u(q)] where p + q = 2n.

Definition: For the n-qubit case the decomposition is defined by:

k = span
R
{A ⊗ Z, B ⊗ 1, iZ(n)|A, B ∈ su(2n−1)} (11)
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m = span
R
{A ⊗ X, B ⊗ Y, iX(n), iY (n)|A, B ∈ su(2n−1)} (12)

Definition: The Cartan involution is:

θ(u) = Z(n)uZ(n), Θ(U) = Z(n)UZ(n) (13)

Hence we may compute the global Cartan decomposition G = KM of SU(2n) as in

Theorem 2.

We must now define a Cartan subalgebra h contained in m. Here Nakajima et al.

make a different choice of h to that used by Khaneja and Glaser in [38] and [39]. Recall

that all maximal Abelian subalgebras share an adjoint orbit, namely m itself, and that

one may, as a result, switch between them with relative ease.

Definition: Nakajima, Kawano and Sekigawa choose to define

h = span
R
{|j〉〈j| ⊗ iσx|j = 0, ..., 2n−1 − 1} (14)

The algorithm of [45] based upon this choice of h corresponds to a decomposition of

an n-qubit quantum logic circuit into 2n−1−1 uniformly controlled one qubit elementary

rotations, requiring 4n − 2n−1 CNOT gates.

Note that Nakajima, Kawano and Sekigawa Cartan decompose SU(2n) yielding 2

elements of SU(2n−1) ⊕ SU(2n−1). These are then implicitly treated as if they were 4

elements of SU(2n−1) with no further special structure, and precisely the same Cartan

decomposition is applied to each of these smaller unitary operators. This approach is

implicitly based on the assumption that the tensor sum of Cartan decompositions is the

Cartan decomposition of tensor sums. This assumption, however, can easily be proven

to be false. Thus, we now set out to find a Cartan decomposition of the Lie algebra

s[u(2n−1) ⊕ u(2n−1)].

Consider the basis of s[u(2n−1) ⊕ u(2n−1)]: span
R
{A ⊗ Z, B ⊗ 1, iZ(n)|A, B ∈

su(2n−1)}.

Definition: It is straightforward to confirm that the decomposition

k′ = span
R
{A ⊗ 1, iZ(n)|A ∈ su(2n−1)}

m′ = span
R
{A ⊗ Z|A ∈ su(2n−1)}

satisfies the definition of a Cartan decomposition for s[u(2n−1) ⊕ u(2n−1)]. Notice that

Z(n) represents a phase and commutes with every element of k′, indeed it commutes

with every element of s[u(2n−1)⊕u(2n−1)]. We may factor out the Z(n) component from

s[u(2n−1) ⊕ u(2n−1)] to get su(2n−1) ⊕ su(2n−1). If we define k̃′ = k′ \ span
R
Z(n), then

su(2n−1) ⊕ su(2n−1) = k̃′ ⊕ m′ is a Cartan decomposition.

Definition: A Cartan involution to separate these subsets is θ(m) = X(n)mX(n).

Furthermore we find that if we apply this involution to an element of s[u(2n−1)⊕u(2n−1)]

which has not had its Z(n) phase factored out, the phase lands in the −1 eigenspace.
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U1 U
†
1
V1 U2 U

†
2
V2

• Rx •

=

Rz Ry Rz
�������� Rz • �������� Rz Ry Rz

�������� Ry Rz
�������� Rz

Rz Ry Rz • Ry
�������� Ry • Rz Ry Rz

�������� Ry Rz
�������� Rz

• • • •
�������� Rz

�������� Rz
�������� • �������� Rz Ry

�������� Ry Rz
�������� Rz

• Ry
�������� Ry

�������� �������� Ry
�������� Ry

�������� • Rz Ry
�������� Ry Rz

�������� Rz

• • • • • • • • • •
• •

• •

Rx H �������� H Rx H �������� H Rx H �������� H Rx H �������� H

Rz Ry Rz
�������� Rz • �������� Rz Ry Rz

�������� Ry Rz
�������� Rz

Rz Ry Rz • Ry
�������� Ry • Rz Ry Rz

�������� Ry Rz
�������� Rz

• • • •
�������� Rz

�������� Rz
�������� • �������� Rz Ry

�������� Ry Rz
�������� Rz

• Ry
�������� Ry

�������� �������� Ry
�������� Ry

�������� • Rz Ry
�������� Ry Rz

�������� Rz

• • • • • • • • • •

Figure 2. A simplified three qubit circuit based on Nakajima, Kawano and

Sekigawa’s algorithm: uniformly controlled two qubit operations are built using

Vatan and Williams’ optimal two qubit circuit to produce a universal 44 CNOT

three qubit circuit with a constructive algorithm. The operator represented here is

(U1⊗|0〉〈0|+V1⊗|1〉〈1|)(Rx1⊕Rx2⊕Rx3⊕Rx4)(U2⊗|0〉〈0|+V2⊗|1〉〈1|), in accordance

with the NKS algorithm.

We must also choose a Cartan subalgebra in m′; for simplicity, we choose the set of

diagonal elements of m′: h′ = span
R
i{IZZ, ZIZ, ZZZ} in the three qubit case.

We now compute the Cartan KAK factors of an arbitrary element (G) of

S[U(2n−1)⊕U(2n−1)]. First we use the method of Theorem 2 to compute the component

of G not in exp(k̃′), i.e. we compute M̃2 = M2P 2 where M is from G = KM and P is the

Z(n) factor. Next we diagonalize M̃2 - this diagonal matrix is A2P 2, where M = LAL†

for A ∈ exp(h′), L ∈ exp(k̃′). Finally we take the square root of this diagonal matrix

and compute K. To be completely explicit, we present here the algorithm.
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1. Compute M̃2 = M2P 2 = Θ(G†)G where Θ(U) = X(n)UX(n) (see Theorem 2).

2. Compute the eigenvalue decomposition of M̃2: let M̃2 = LD2L† be the eigenvalue

decomposition. Since D2 is diagonal and unitary it must be an element of the

exponentiation of h′ ∪ span
R
Z(n) and L must be an element of exp(k̃′).

3. Compute Ã = D1/2 = AP where A ∈ exp(h′) and P is the phase term. Each entry

in the diagonal unitary D is of the form eiθ, so we may simply replace each of these

entries with e
iθ

2 and we have Ã. Now M̃ = LÃL†.

4. Compute K = GM̃ †. We have G = P (KLAL†) where P commutes with all of the

other factors and therefore may be placed according to convenience, K, L ∈ exp(k′) and

A ∈ exp(h′), that is K and L are general (n − 1) qubit operations which leave the low

qubit fixed and A is a uniformly controlled z-rotation on the low qubit.

The operations in exp(k′) do nothing to the nth qubit and can perform any unitary

operation on the remaining n − 1 qubits, i.e. we can treat them precisely as we would

any element of SU(2n−1), and we may absorb the diagonal P into A and implement

Ã = AP according to the decomposition offered in [35], which leaves us with a uniformly

controlled z-rotation on the low qubit and a diagonal operator acting on the remaining

qubits which may simply be absorb into a neighboring n − 1 qubit operation.

Given an operation on any number of qubits n, we apply Nakajima, Kawano and

Sekigawa’s algorithm to produce 2 elements of S[U(2n−1) ⊕ U(2n−1)], then we apply

the algorithm we have just described to these uniformly controlled operations to yield 4

elements of SU(2n−1) to which we apply the NKS algorithm, and so on, until we are left

with 4n−2 two qubit operations, to which we apply the AI algorithm described earlier.

This recursive decomposition scheme generates a complete constructive factorization

(see Figure 3 for the three qubit case and Figure 4 for an illustration of the recursion

applied to four qubits). Using no further refinements, this algorithm yields a 24 CNOT

three qubit gate and has an asymptotic CNOT cost of 9
16

4n − 3
2
2n, an improvement of

nearly a factor of two over the standard NKS circuit.

5. Conclusions and Future Work

This scheme of alternating Cartan decompositions of su(2n) with Cartan decompositions

of s[u(2n−1) ⊕ u(2n−1)] is the best known circuit decomposition paradigm. This chain

of decompositions yields precisely the QSD circuit structure that Shende, Bullock and

Markov derived by analogy from the classical Shannon decomposition in [35]. Further

slight improvements can be made to the CNOT cost of the tensor sum Cartan circuit

by the application of the identities given in Appendix A and Theorem (14) of [35],

reducing the overall cost of a three qubit gate to 20 CNOTs, and the asymptotic cost

to 23
48

4n − 3
2
2n + 4

3
, but the decomposition is still fundamentally the same, and these

simplifications can be incorporated into the constructive algorithm presented here with
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U1 U2 U3 U4

Rz Rx Rz

=

Ry Rz Ry
�������� Rz • �������� Ry Rz Ry •

Ry Rz Ry • Ry
�������� Ry • Ry Rz Ry • •

Rz
�������� Rz

�������� Rz
�������� Rz

Ry Rz Ry
�������� Rz • �������� Ry Rz Ry

Ry Rz Ry • Ry
�������� Ry • Ry Rz Ry

• •
• •

Rx H �������� H Rx H �������� H Rx H �������� H Rx H �������� H

Ry Rz Ry
�������� Rz • �������� Ry Rz Ry •

Ry Rz Ry • Ry
�������� Ry • Ry Rz Ry • •

Rz
�������� Rz

�������� Rz
�������� Rz

Ry Rz Ry
�������� Rz • �������� Ry Rz Ry

Ry Rz Ry • Ry
�������� Ry • Ry Rz Ry

Figure 3. The 24 CNOT universal three qubit quantum circuit derived without

further simplification from the Cartan decomposition of s[u(2n−1) ⊕ u(2n−1)].

very little effort. By constructing the QSD from its Lie algebraic roots this work puts

the QSD - the best known generic quantum circuit decomposition, less than a factor

of two from the highest lower bound - into its proper Lie algebraic context as a series

of Cartan decompositions, and provides a new Cartan involution based algorithm to

implement the QSD explicitly.

Another significant advantage of this sort of decomposition, especially in light of

the fact that historically few-qubit circuit optimization has at times advanced ahead

of asymptotic circuit optimization (cf. [34]), is that any future improvements to few-
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U1 U2 U3 U4 U5 U6 U7 U8

Rz Rx Rz Rz Rx Rz

Rz

U9 U10 U11 U12 U13 U14 U15 U16

Rz Rx Rz Rz Rx Rz

Rx Rz

Figure 4. A block diagram of the QSD applied to a four qubit operation; notice that

it consists of only 3 thrice controlled rotations on the low qubit and 4 general three

qubit QSD circuits on the higher qubits.

qubit efficiency can simply be plugged into this algorithm at its lowest level of recursion

(where we turn to Vatan and Williams’ circuit in this case) and translated instantly

into improved asymptotic gate counts. For example, one could use existing methods (e.

g. [51, 52]) to test whether a particular two-qubit gate has non-generic structure which

means that it requires one or two CNOT gates rather than three. Substantially shorter

circuits could be obtained by the application of such methods, and by their extension

to three qubit circuits.
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Chuang, and R. Blatt. Implementation of the Deutsch-Jozsa algorithm on an ion-trap quantum

computer. Nature, 421:48–50, January 2003.

[15] Mun Dae Kim and Jongbae Hong. Coupling of Josephson current qubits using a connecting loop.

Phys. Rev. B, 70(18):184525, Nov 2004.

[16] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, and I. L.

Chuang. Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic

resonance. Nature, 414:883–887, December 2001.

[17] J. Wrachtrup, S. Y. Kilin, and A. P. Nizovtsev. Quantum Computation Using the 13C Nuclear

Spins Near the Single NV Defect Center in Diamond. Optics and Spectroscopy, 91:429–437,

September 2001.

[18] J. A. Jones and M. Mosca. Implementation of a quantum algorithm on a nuclear magnetic

resonance quantum computer. The Journal of Chemical Physics, 109(5):1648–1653, 1998.

[19] Isaac L. Chuang Michael A. Nielsen. Quantum computation and quantum information. Cambridge

University Press, New York, NY, USA, 2000.

[20] D. Leibfried et al. Experimental demonstration of a robust, high-fidelity geometric two ion-qubit

phase gate. Nature, 422(6930):412–415, Mar 2003.

[21] C. Monroe, D. M. Meekhof, B. E. King, W. M. Itano, and D. J. Wineland. Demonstration of a

fundamental quantum logic gate. Phys. Rev. Lett., 75(25):4714–4717, Dec 1995.

[22] T. B. Pittman, M. J. Fitch, B. C Jacobs, and J. D. Franson. Experimental controlled-not logic

gate for single photons in the coincidence basis. Phys. Rev. A, 68(3):032316, Sep 2003.

[23] Zhi Zhao, An-Ning Zhang, Yu-Ao Chen, Han Zhang, Jiang-Feng Du, Tao Yang, and Jian-Wei

Pan. Experimental demonstration of a nondestructive controlled-not quantum gate for two

independent photon qubits. Phys. Rev. Lett., 94(3):030501, 2005.

[24] A. Rauschenbeutel, G. Nogues, S. Osnaghi, P. Bertet, M. Brune, J. M. Raimond, and S. Haroche.

Coherent operation of a tunable quantum phase gate in cavity QED. Phys. Rev. Lett.,

83(24):5166–5169, Dec 1999.

[25] R. Jozsa. Quantum algorithms and the Fourier transform. Proceedings: Mathematical, Physical

and Engineering Sciences, 454(1969):323–337, 1998.

[26] Robert Beals. Quantum computation of fourier transforms over symmetric groups. In STOC ’97:

Proceedings of the twenty-ninth annual ACM symposium on Theory of computing, pages 48–53,

New York, NY, USA, 1997. ACM.

[27] Cristopher Moore, Daniel Rockmore, and Alexander Russell. Generic quantum fourier transforms.

ACM Trans. Algorithms, 2(4):707–723, 2006.

[28] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus,

Peter Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. Elementary gates for

quantum computation. Phys. Rev. A, 52(5):3457–3467, Nov 1995.

[29] E. Knill. Approximation by quantum circuits, 1995. http://arxiv.org/abs/quant-ph/9508006.

[30] Vivek V. Shende, Igor L. Markov, and Stephen S. Bullock. Minimal universal two-qubit controlled-

not-based circuits. Phys. Rev. A, 69(6):062321, Jun 2004.

[31] Juha J. Vartiainen, Mikko Möttönen, and Martti M. Salomaa. Efficient decomposition of quantum

gates. Phys. Rev. Lett., 92(17):177902, Apr 2004.
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