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Abstract of “Liquid Crystalline Polymers”, by Arash Ahmadzadegan, Ph.D., Tufts Univer-

sity, August 2013.

In this thesis, different aspects of the rheology and directionality of the liquid crystalline

polymers (LCPs) are investigated. The rheology of LCPs are modeled with different rhe-

ological models in different die geometries. The final goal in modeling the rheology and

directionality of LCPs is to have a better understanding of their rheology during extrusion

processing methods inside extrusion dies and eventually produce more isotropic films of

LCPs. An attempt to design a die geometry that produces more isotropic films was made

and it was shown that it is possible to use the inertia of the polymer to generate a more

isotropic velocity profile at the lip of the die. This isotropic velocity profile can lead to

alignment of directors along the streamlines and produce an isotropic film of LCP. It is

shown that the rheological properties of the LCP should be altered to have a very low

viscosity for this type of die to work.

To be able to investigate the effect of processing on directionality of LCPs, it is essential

to develop a method to simulate the directionality based on processing conditions. As a

result, a user defined function (UDF) code was added to ANSYS® FLUENT® to simulate

the directionality of LCPs. The rheology of the LCP is modeled using power-law fluid

model and the consistency index (K) and power-law index (n) were estimated based on the

experimental measurements done with capillary rheometry. Three main phenomena that

affect the directionality namely effects of Franks elastic energy, the effect of shear and the

effect of movement of crystals with the bulk of polymer are investigated. The results of this

simulation are close to physical phenomena seen in real LCPs. To quantify the directionality

of the LCPs, the order parameter of the domain were calculated and compared for different

flow and fluid conditions.

All polymers including LCPs are viscoelastic fluids in molten state. To understand

the rheology of LCPs, a die-swell experiment was carried out using LCP material and

Polypropylene (PP). For this experiment a capillary die with two different land-lengths was

designed and built. The die-swell of the materials were measured optically according to

ISO standards and the dependence of the die swell for materials on rheological properties

is investigated.

To simulate the viscoelasticity of LCPs numerically, ANSYS® POLYFLOW® was

used. ANSYS® POLYFLOW® has several viscoelastic models and is designed to simulate



extrusion processes. The geometry of the capillary die designed for the experiments was

modeled in ANSYS® POLYFLOW® and the results were compared with the experimental

results obtained for LCP and PP. It is shown that the morphology of the polymer should

be considered into account to have a correct simulation of die swell.
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Chapter 1

Introduction

With advances in technology and the introduction of new materials, the need for new pro-

cessing methods to enable the benefits of these materials is growing. Liquid crystalline

polymers (LCPs) are among a class of high performance polymers but the orientation of

crystals in the final product can adversely affect their properties. Modeling the direction-

ality of LCPs during manufacturing processes can provide information and insight into

designing new processing methods in order to achieve desired material properties. Liq-

uid crystalline polymers (LCPs) show some unique properties that make them suitable

for special engineering applications. Among these properties are high mechanical strength

at high temperatures, high chemical resistance, flame retardancy and good weatherability.

They have also good electrical properties such as very low loss tangent and almost constant

dielectric constant (Thompson et al. [1]). These exceptional properties even encouraged

researchers to improve the properties of commercial polymers by using LCP as reinforce-

ment (Chinsirikul et al. [2]). Most of the applications of LCPs are in injection molding

processes. To utilize the exceptional properties of LCPs in extruded films, it is important

to control the orientation of crystals in the film to achieve a more isotropic properties in

the plane of the film. Different researchers have introduced different methods to make more

isotropic films. Among these are the introduction of counter rotating dies by Lusignea [3],

insertion of a porous media in the die by Boles et al. [4] and addition of a magnetic field

by Fu and Wang [5]. During almost all manufacturing processes of LCPs, these materials

are formed in the molten state. As a result, studying the rheology of LCPs is important

and it is highly desirable to model their rheology computationally. Although amorphous

polymers become isotropic in the molten state, LCPs have preferred orientation even in the

molten state and the interaction between crystals plays an important role in rheology of

1
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LCPs and causes some unique behaviors (Donald et al. [6]). Among these behaviors are

low viscosity compared to conventional polymers and very small or no die swell during the

extrusion. Moreover, because of the anisotropy of LCPs, the orientation of these crystals

determines the properties of the final manufactured product. As an example, during the

extrusion processes, crystals align themselves parallel to the direction of shear. But unlike

amorphous polymers, molecules in LCPs have higher inertia which opposes the brownian

motion of molecules and keeps their orientation even after exiting the die. This phenomenon

makes the simulation of directionality inside the die more valuable as the directionality re-

mains almost intact even after exiting the die. Although most of the theoretical research

for modeling the rheology and orientation of LCPs is based on small molecule liquid crys-

tals (SMLCs), the results of those studies are also applicable to polymeric liquid crystals,

especially in the case of shear flows (Donald et al. [6]). The theories for the simulation of

the rheology of LCPs are still evolving and researchers are trying to find more accurate

theories (Han [7, 8]). The widely used constitutive equations relating the stress and strain

for liquid crystals are based on the Leslie-Ericksen theory which was developed by Leslie [9]

based on the work of Ericksen [10] and Frank [11]. These equations consider the effect of

crystals on the stresses to be continuous and defines a vector field called the director field.

The equations are very complicated and only simplified variations of them, namely trans-

versely isotropic fluid (TIF) equations have been solved numerically on simple geometries

(ex. Baleo et al. [12], Chang et al. [13]). These simplified equations have some restrictions

as follows:

1. Flow domain is considered to be a mono-domain without disclinations

2. Due to the high viscosity approximation, elastic stresses are considered negligible

compared to viscous stresses

3. The flow is considered steady and isothermal

These assumptions pose a significant restriction to the amount of experimental data avail-

able for verification since most of the experimental data on the rheology of LCPs are based

on the observation of the disclination lines between polarized glasses. The other restriction

of simulating the TIF equations numerically is that the convergence of these equations is

very limited, especially in complex geometries. Since the geometries of the extrusion dies

are normally complex and cannot always be discretized with a structured mesh, a practi-

cal and simplified method for simulating and approximating directionality on unstructured

mesh is highly desirable. The method studied in this thesis has a Monte-Carlo basis and
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can be applied to complex geometries. The other advantage of this method is the abil-

ity to be used on a combination of structured and unstructured meshes with actual fluid

parameters without convergence concerns. As a result, it can be applied in practical sit-

uations. There are some major difficulties associated with modeling the directionality on

unstructured meshes. The most important one is extending the director calculations to un-

structured meshes. This problem is addressed here by treating each cell locally. This means

that each cell interacts with only its neighbors. Although unstructured meshes introduce

some errors associated with averaging of quantities, they are the only method of discretizing

the complex geometries of dies.

The flowchart in Figure 1.1 shows the approach taken here to find an optimized geometry

for making an isotropic film of LCP. In this approach, a geometry for the die is picked based

on existing coat-hanger die design. In addition to the geometry, the rheological properties of

the polymer are also important for the simulation and can be altered to change the rheology.

After this step, the rheology of the polymer is modeled using a fluid model available based

on the experimental measurements. This step involves meshing the geometry and applying

the boundary conditions to the flow. The results of this simulation involves the velocity

field, pressure field and temperature field. The velocity field is used in the next step to

simulate the directionality of crystals. In this step a user defined function (UDF) is used to

extract the velocity field from the rheological simulation and the constitutive equations for

the Franks elastic energy, evolution equation and movement of crystals with the flow are

applied to the crystals. In the next step after simulating the directionality it is important to

quantify the directionality of crystals. This can be done using the order parameter. Order

parameter is a quantity (for nematics is a scalar) that quantifies the degree of order in a LCP

material. After quantifying the directionality it is possible to compare the directionality

to a desired value and iterate the process by changing the geometry and/or rheological

parameter to find a more isotropic LCP film.

Since the directionality modeling depends on the rheological simulation, it is important

to be able to simulate the rheology of the polymer correctly. One of the important phe-

nomena during the extrusion of plastics is the expansion of the extrudate after exiting the

lip of the die. This phenomenon is commonly known as extrudate swell or die swell. There

are two important reasons for the formation of the die swell.

First, the rapid changes in the velocity profile of the material leaving the inside of the

die to the outside of the die. This difference in the velocity profile is the result of the

polymer molecules attaching to the die causing zero velocity at the wall. The velocity of

the polymer inside the die changes from zero at the wall to its maximum in the middle of
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Figure 1.1: General approach to find an extrusion die geometry with a more isotropic film
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the die. After leaving the die, extrudate moves with a constant velocity across its thickness.

This means that the molecules closer to the wall need to accelerate and the molecules that

were traveling at the center of the die need to decelerate and come to a mutual constant

velocity. This causes the extrudate to swell as shown for Newtonian fluids by Hill and

Chenier [14] experimentally and by Russo and Phillips [15] numerically.

Second reason is the elasticity of the polymers that is caused by the polymer molecules

having a tendency to go to their previous state after the cessation of the shear. Due to the

elasticity of the polymers, they show normal stress differences in presence of shear. These

normal stresses are in addition to isotropic hydrostatic forces, do not exist in Newtonian

fluids, and can be measured using various oscillatory rheometers [16, 17].

In this thesis, the die swell of a LCP material and a conventional polymer (PP) are

compared experimentally. There is also an attempt to model the die swell of the LCP using

Phan Thien-Tanner (PTT) viscoelastic model. The numerical simulation of the study is

done using ANSYS ® POLYFLOW ®.



Chapter 2

Modeling Rheology

Modeling the rheology of the polymer is the first step in the simulation of the polymer behav-

ior during the processing. Processing of the polymers include some complicated phenomena

due to the viscoelastic behavior and thermal dependencies. For example, the temperature

variations inside the die and flow channel is high enough to consider their effect on the vis-

cosity of the polymer. In addition, due to the high viscosity of polymers, the heat generated

due to the viscous dissipation should be taken into account. Another important character-

istics of the polymers is the shear thinning behavior. This behavior can be modeled in

ANSYS® FLUENT® using different fluid models. In this chapter, flow of polymers

in different die geometries are simulated using ANSYS® FLUENT®. These geometries

include a cross-flow die design, a coat-hanger design, a rectangular channel and a capillary

die. The rectangular channel is used later to study the directionality of crystallines. The

geometry for the capillary die is designed to measure and simulate the die swell of the

different polymers. Die swell is one of the phenomena caused by the viscoelasticity of the

polymers and gives some measures of the elasticity of the material. In this section, the die

swell of polymers are measured experimentally and an attempt to numerically simulate the

die swell with viscoelastic models of the ANSYS ® POLYFLOW ® is carried out.

2.1 Cross-flow die

Any rod like molecule or crystal tends to orient itself in the direction of shear as it moves

within a flow. Since polymers consist of long chains of molecules, they experience the same

phenomena when flowing in the melt condition. For most polymers, the molecules change

direction and distribute uniformly in space during the solidification. However due to the

higher inertia of the crystals in the liquid crystalline polymers, the oriented crystals will keep

6
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Figure 2.1: Geometry of the co-rotating biaxial die

their order during the solidification and as a result the final product will show anisotropy

in the material properties. The product of interest here is the extruded film from the film

extrusion process. To overcome this problem for extruded films, many complex die design

technologies have been developed that involve moving surfaces. The use of biaxial shear

flow during extrusion, elongational strain after extrusion, electromagnetic field effects, and

thermal treatment to develop isotropic films has been discussed by Lusignea et al. [18].

Farrell and Lawrence use co-rotating extrusion dies to produce biaxially oriented films of

LCPs [19]. The co-rotating extrusion dies try to use the viscosity of the polymer to produce

a laminar flow with a lateral shear that has a three dimensional profile at the lip of the die.

This geometry, as shown in Figure 2.1, has two co-rotating cylinder which operate at high

temperature and the polymer melt flows between them. The change in the direction of the

crystallines is introduced through the shear effect of the cylinders.

Due to the complexity of this type of die and built-in instabilities during this extrusion

process, a simpler stationary extrusion die is more desirable.

An important parameter to be considered when designing the geometry of polymer dies

is that the flow pattern inside the die highly influences the polymer extrusion process and

any sharp edges inside the die which result in the flow to become turbulent should be

avoided [20]. Turbulence inside the die increases the residual stresses which will be released

after the extrudate leaves the die and causes instabilities in the extrusion process. The

conventional die for extrusion of polymer films or the coat-hanger design is shown in Figure
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Figure 2.2: Geometry of a Coat-hanger die

2.2. These dies are designed such that the velocity of the extrudate coming out of the die

is constant across the lip of the die.

A new design for the die geometry introduced here uses cross flows to produce the

required lateral shear across the thickness of the film. As a result, no moving part is used

in the die. A simple geometry of cross-flow die consists of two cross flows which interact

with each other along the mid-plane. The interaction of these two symmetrically positioned

flows causes the mid-plane to exit the lip normal to the exit plane while from the mid-plane

to the upper and lower planes velocity vectors change direction gradually. To construct

this geometry Gambit® was used since it can export the geometry, mesh and boundary

conditions to FLUENT®. To demonstrate the idea of interacting cross flows, a model was

built with 20 channels in which the average velocity vector of the flow in the top half of

them is perpendicular to the average velocity vector in the bottom half. These channels are

open along the interface between them and provide the interaction of flows inside the die

(Figure 2.3).

This geometry can be constructed by machining the channels inside the upper and lower

part of the die since the interface between them is open. It should also be noted that since

the velocity of the polymer is inherently 3D in this flow, it is not possible to make a 2D

geometry representing the cross flows.
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Figure 2.3: Geometry of a cross-flow die

Figure 2.4: Structured mesh on the cross-flow geometry

2.1.1 Grid Generation

The required mesh to decompose the geometry to finite volumes was generated in GAM-

BIT®. Structured cubic elements were generated for the geometry of the cross-flow with

the consideration of the flow pattern. Using hexahedral elements, it is possible to achieve

higher accuracy in the simulation with fewer elements and make the simulation computa-

tionally cheaper. The maximum skewness of the generated grids is calculated to be 0.25 and

the maximum aspect ratio of the elements is 7.1 . Both these characteristics show that the

mesh is consists of high quality elements. The total number of elements inside and outside

the die is 410,000. Figure 2.4 shows the generated mesh on the cross-flow geometry.

Due to the complexity of the coat-hanger die, unstructured hexahedral elements were

chosen for decomposing the geometry into finite volumes. Figure 2.5 shows the mesh used

for the coat-hanger geometry. Mesh density is reduced here for demonstration purposes.
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Figure 2.5: Unstructured grid on the geometry of the coat-hanger die

This mesh consists of 3,000,000 elements with the worst skewness on 0.777 and worst aspect

ratio of 3.5 which are both in the range of acceptable limits.

2.1.2 Material Properties and boundary conditions

Two different models for material properties were used to simulate the flow inside the die.

The first model considers the fluid to be Newtonian and defines a constant viscosity. In this

model stress and strain inside the flow are linearly proportional. The second model was the

power-law fluid model which was chosen based on the available experimental results for one

type of LCP. This experiment is done with a capillary rheometer using a capillary length of

20mm and diameter of 1mm on a LCP. This experiment was carried out under isothermal

condition where the temperature was kept constant at 350◦C. The results are shown in

Figure 2.6.

By looking at the curve of viscosity vs. strain rate on a log-log scale, it appears that

it can be modeled by the non-Newtonian power-law model. Based on this information the

non-Newtonian power-law model was used as a second model to simulate the flow inside

the die. In the power law model, equation 2.1 is used in the constitutive equation to model

viscosity in FLUENT®[21].

ηmin < η = kγ̇n−1eT0/T < ηmax (2.1)

To find the parameters of this equation, the automatic option of POLYMAT® software

was used. Moreover, for defining this model completely, the minimum and maximum values

of the viscosity should be given. These values were chosen to be the maximum and minimum
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Figure 2.6: Viscosity of LCP as a function of shear rate from a capillary rheometer

values available from the capillary experiment which are 1029 Kg/(m.s) and 14 Kg/(m.s)

respectively.

For finding a non-Newtonian model that satisfies the isotropy of extrudate, some differ-

ent valyes for the non-Newtonian model parameters were considered. (Table 2.1)

Three different boundary conditions were used to define the boundaries of the geometry

which include velocity inlet, walls and outlet. The fins inside the die were modeled as zero

thickness walls with zero tangent and normal velocities. Also, since there is no free wall

boundary condition available in FLUENT®, the flow outside the die is also modeled inside

a channel with slip condition (zero shear). It should be noted that the interfaces between

the upper and the lower channels are defined as an interface. This means that two cross

flows have interaction along this surface.

2.1.3 Solution consideration and results

FLUENT®uses finite volume methods to solve the constitutive equations on the discretized

flow field [21]. One important consideration before beginning the simulation is the impor-

tance of inertia terms in the equations. Since most polymers have high viscosities, flow is
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Table 2.1: Constants used for the non-Newtonian power-law model

Consistency
index (k)
(Kg.sn−2)/m

Power-Law
index (n)

Max Vis-
cosity
Kg/(m.s)

Min Vis-
cosity
Kg/(m.s)

Velocity
Vector
Angle
(degrees)

1864 0.4651 1029 14 0

1864 0.1 1029 0.0001 4

0.1 0.4651 1029 0.0001 0

0.1 0.2 1029 0.0001 15

0.01 0.4651 1029 0.0001 46

0.01 0.2 1029 0.0001 90 (desired)

mostly driven by pressure and the non-linear inertia terms can be neglected. The impor-

tance of inertia terms can be determined by calculating the Reynolds number of the flow. In

all the simulations regarding the cross-flow, the inertia terms were considered. Ignoring the

inertia terms helps with the convergence of the solution since these terms introduce non-

linearity to the equations but it also reduces the accuracy of the results especially when the

Re number is not small. Steady state, first order pressure based implicit solver was used in

all cases.

The velocity vectors at the lip of the cross-flow die geometry for Newtonian fluid are

shown in Figure 2.7. As can be seen, velocity vectors change from −45◦ to 45◦ across the

thickness of the film. Velocity vectors are always tangent to the streamlines.

Figure 2.8 shows the same geometry of cross-flow shown in Figure 2.7 with non-Newtonian

power-law model. The parameters used for this simulation are from the capillary rheometer

data shown in Figure 2.6. As can be seen, the change in the direction of velocity vectors

across the die is very small and hard to recognize except for the vectors in the vicinity of

the fins.

To study the effect of rheological model and properties on the velocity vectors at the lip

of the die, the simulation of the rheology has been done using two different Newtonian and

six non-Newtonian viscosity models. The first Newtonian model simulation on cross flow

die geometry is done using a constant viscosity of 0.1 Pa.s. It can be seen from the velocity

vectors that in this case the relative importance of inertia terms forces the fluid to keep

its direction until it exits the die lip (Table 2.2). The second Newtonian model used the

average value of the viscosities obtained during the capillary rheometry experiment which

is 220.1 Pa.s. For this high value of viscosity, inertia forces are negligible compared to the

viscous forces and flow reaches its fully developed condition in a very short distance and



13

Figure 2.7: Velocity vectors across the thickness at the lip of the die (Newtonian Model)
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Figure 2.8: Velocity vectors across the thickness at the lip of the die (Non-Newtonian Model)

the only change in the velocity vectors are observed to be in vicinity of the fins. Although

the actual material parameters for non-Newtonian model did not satisfy the isotropy in

the plane of films, it is possible to change the material properties of the polymer to find a

polymer that follows the power-law model and has the isotropy.

Since the maximum angle between two cross flows depends both on the inertia and

viscous forces, this angle is derived for several different Reynolds numbers with Newtonian

model. Re number is calculated with the characteristic length of the thickness of each cross

flow channel. These results are shown in Figure 2.9.

By increasing the Re of the flow, the relative importance of the inertia forces increases

and we approach the 90 degrees difference (from -45 to +45 degrees). On the other hand,

at very low Re, flow approaches its fully developed condition and there will be no difference

in the angle. According to Figure 2.9, it can be seen that there is a turning point at around

Re=500 that the angle is 80 degrees and at lower Re the angle does not satisfy the desired

angle between the two flows.

The last simulation on the cross-flow geometry is done using the actual experimentally

obtained rheological data. In this case, due to the shear thinning effect of the viscosity, the

pressure drop is less than the pressure drop obtained for constant viscosity and also the
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Figure 2.9: Change of angle between vectors as a function of the Re of the flow (Newtonian
Model)
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Table 2.2: Summary of the simulation results

. ∆P (Pa) Velocity Profile

Newtonian coat-hanger
(η = 220.1Pa.s)

258,720 Aligned

Power-law coat-hanger
(η = 1864γ̇0.4651Pa.s)

709,400 Aligned

Newtonian cross-flow
with low viscosity
(η = 0.1Pa.s)

2476

Newtonian cross-flow
with high viscosity
(η = 220.1Pa.s)

4,207,000

Power-law cross flow
(η = 1864γ̇0.4651Pa.s)

3,224,000

velocity profile at the lip is more flat.

Table 2.2 summarizes the results obtained from FLUENT®for the coat-hanger and the

cross-flow geometries. From these results it can be observed that it is possible to obtain

the correct molecular orientation using this new cross-flow die geometry. One solution for

increasing the change in the direction of velocity vectors can be increasing the number of fins

inside the die or increasing the angle between the two cross flows. It is also clear that the

design of the die geometry is directly related to the material and processing characteristics

such as viscosity and inlet velocities.

2.2 Modeling the rheology and temperature distribution in

a coat-hanger die

To better understand the effect of temperature distribution on the rheology and the die, a

simulation of the rheology with the consideration of temperature is done here. The design

of a coat-hanger die is normally done considering an isothermal condition. This means
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that for the die to operate at its design point, it is necessary to keep the whole die at a

constant temperature. Any deviation from the isothermal condition causes the die not to

operate at its design point. Coat-hanger dies are designed to provide a uniform velocity

profile at the exit of the die. These type of dies are a way of distributing the polymer

coming from the extruder in a cylindrical pipe and forming it in the shape of a thin film.

To keep the die in isothermal condition, heating elements and thermocouples are used and a

controller controls the power going into the heating elements based on the temperature data

from the thermocouples. Figure 2.10 shows the coat-hanger die used in this study and the

placements of the heating elements in it. Since the flow and geometry of the coat-hanger die

has a symmetry plane in the middle, all the simulations are done using half of the die with

a symmetry boundary condition. This approach reduces the number of cells to half which

makes it possible to have a more accurate simulation in addition to being computationally

cheaper.

Two different types of simulations was done on the coat-hanger die based on the type

of boundary conditions in hand.

� In one case, thermal boundary conditions are defined on the body of the die. These

boundary conditions are consist of the convection heat transfer to the ambient from

the outer surface of the die and constant temperature at the position of the heating

elements. In this case the temperature of the surface of the flow channel and the

exchange of heat between the die and the polymer will be simulated as a part of the

solution.

� The second type of simulation is done using the measured temperatures on the surface

of the flow channel. In this case, the temperature of the surface is imposed and its

effect on the rheology is simulated.

2.2.1 Modeling the coat-hanger die and the flow channel

The importance of modeling the coat-hanger die in addition to the flow channel is that

more realistic thermal boundary conditions can be applied used for the simulation. In the

die, the only physical phenomena to be simulated is the conduction heat transfer using the

Fourier’s law. On the other hand, inside the flow channel Navier-Stockes equation should

be solved in addition to the energy equation and the dependence of the solution on the

mesh is more important. Based on this discussion, unstructured tetrahedral meshes are

considered to discritize the geometry of the die and finer mostly structured meshes were

used to model the rheology inside the flow channel. Figure 2.11 shows the symmetry plane
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Figure 2.10: Cross section of the Coat-hanger die
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Figure 2.11: Mesh structure inside the die and the flow channel

of the die and flow channel. Due to the symmetry only half of the die needs to be simulated.

As can be seen from Figure 2.11, the geometry of the flow channel is extended outside the

die. This geometry is to apply the physical boundary conditions more realistically. the top

and bottom surfaces of the extended flow channel have slip condition with zero shear. This

simulates the free surface condition outside the die although the die swell and remeshing

of the flow channel is not considered. The pressure is imposed at the end of this extended

geometry not to disturb the simulated flow inside the flow channel. The thermal boundary

condition on the extended geometry is considered to be convective heat transfer to the

surroundings as it would be for a free surface of the polymer.

Other boundary conditions on the surfaces of the geometry include:

� Convection heat transfer from the surface of the die. The orientation and

placements of the surfaces should be taken into account when defining the convection

heat transfer coefficient. For example for the thin gaps between different parts of the

die geometry the convection heat transfer coefficient of 10 W/(m2.K) and for the rest

of the exposed surfaces the convection coefficient of 100 W/(m2.K) was defined.

� Constant temperature at the heaters. Although the heaters generate heat rather

than having a constant temperature, the constant temperature boundary condition

is defined for them with the set temperature for their respective thermocouple. It is

possible to calculate the amount of heat generated from each of the heaters with this
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Table 2.3: Thermal properties of the LCP as a function of temperature

Temperature
(C)

Specific heat
Cp (J/(Kg.K))

Temperature
(C)

Thermal
conductivity
k (W/(m.K))

60 1055 68 0.367

90 1207 109 0.387

120 1310 129 0.37

150 1399 148 0.391

180 1473 168 0.385

210 1536 187 0.384

240 1605 207 0.374

270 1691 228 0.385

295 1770 248 0.371

320 1796 310 0.383

345 1732 330 0.349

370 1728 371 0.367

method and design the heaters based on this information.

� Mass flow inlet. The weight of the polymer coming out of the die lip was measured

several times and the average value of these measurements was used as a mass flow

inlet. It is assumed that the density of the polymer is the same in the molten and

solid states.

� No slip wall boundary condition. The rheological boundary condition on the

walls of the flow channel are wall boundary condition with no slip. The thermal

boundary condition on this surface is the interface and has to be simulated as a part

of the solution.

Material properties

The die is made out of steel and its properties were extracted from the FLUENT®material

library. These properties are specific heat of Cp = 502.48 J/(Kg.K) and thermal con-

ductivity of k = 16.27 W/(m.K). For the LCP these thermal properties can be entered

as a function of temperature. These properties are measured and are given in terms of

temperature in Table 2.3.

The effect of temperature on the viscosity of the LCP can be modeled using the Arrhe-

nius model. This model is available in FLUENT®through equations 2.2 and 2.3.
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Table 2.4: Activation energy/R for some polymers

Fluid η0 (Pa.s) T0 (K) E/R (K)

High-impact PS 1.45× 105 463 3707

PS 9.2× 103 483 4954

PP 3.2× 103 463 5.1− 5.6× 103

HDPE 1520 473 2.8− 3.3× 103

LDPE 3200 453 6840

Polymethyl methacrylate 6000 513 9855

µ = η(γ̇) �H(T ) (2.2)

H(T ) = exp

[
α

(
1

T − T0
− 1

Tα − T0

)]
(2.3)

where α is the ratio of the activation energy to the thermodynamics constant and Tα is

the reference temperature for which H(T ) = 1. T0, which is the temperature shift, is set

to 0 by default and corresponds to the lowest temperature thermodynamically possible. T0

and Tα are absolute temperatures. α for some polymers are mentioned in Table 2.4.

Results

Figures 2.12, 2.13, 2.14, 2.15 show the simulated temperature on the different parts of the

die. It can be seen that the coolest part of the die is the end plate close to the end of the

flow channel.

Since the effect of the temperature on the viscosity of the polymer is modeled here,

it is possible to compare the flow of polymer with and without the effect of temperature

variation on the viscosity. The best way to look at the effect of temperature on the rheology

is to look at the velocity profile at the lip of the die. Figure 2.16 shows the velocity contours

inside the flow channel on two perpendicular surfaces. It can be seen from Figure 2.12 that

the lack of temperature control close to the lip of the die on both sides caused very low

temperature compared to the ideal 350◦. This lower temperature on the surface of the die

causes the polymer inside the die to have lower temperature (Figure 2.14).

2.2.2 Modeling the flow channel of the coat-hanger die

The second type of simulation done for the rheology of the LCP uses the isothermal and

measured temperature profiles inside the die. The measurements are done using thermo-

couples in the absence of the flow of polymer. Figure 2.17 shows the velocity distribution
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Figure 2.12: Temperature contours on the surface of the coat-hanger die

Figure 2.13: Simulated temperature contour on the surface of the flow channel
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Figure 2.14: Temperature contour at the horizontal cross section of the die and the flow
channel

Figure 2.15: Temperature contour at the vertical cross section of the die and the flow
channel
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Figure 2.16: Velocity profile at the mid-planes of the die

at the lip of the die with the isothermal boundary conditions. As can be seen from Figure

2.17, the velocity profile has a very small variation across the lip of the die and has higher

velocities closer to the corners of the die. This velocity distribution has not been observed

in real extrusion processes. In real extrusion processes keeping the die in an isothermal

condition is difficult. Figure 2.18 shows the actual measured which shows almost 20◦C

difference between maximum and minimum temperatures inside the die.

The measurements of temperature inside the die was done by attaching thermocouples

to the surface of the flow channel in several positions as shown in Figure 2.18. These

measurements are done along the lines that are supposed to be the same temperature. The

goal here is to find the effect of the actual temperature profile on the rheology of the polymer

inside the flow channel.

To import the measured temperature data to FLUENT®and use them as thermal

boundary condition for the flow channel, the position of the data measured needs to match

the geometry to be modeled. By knowing the scale of the flow channel, ImageJ image

processing software was used to find the position of each of the points on the flow chan-

nel. Figure 2.19 shows the list of coordinates and their respective temperatures imported

into Mathcad®. Mathcad®is going to be used to find a function for the temperature



25

Figure 2.17: Velocity distribution at the lip of the die with isothermal boundary conditions

Figure 2.18: Measured Temperature Distribution
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distribution.

Figure 2.20 shows the plotted points on the XY plane to verify the extracted data from

ImageJ. It can be seen that if we look perpendicular to the XY axis the points are positioned

correctly as measured.

A 45◦ view of the point with the z-axis indicating the temperature of each point is shown

in Figure 2.21. As can be seen the temperature inside the flow channel has a maximum

in the pipe that connects to the coat hanger and the temperature distribution is almost

symmetrical with respect to the symmetry plane of the flow channel. This symmetry lets

the simulation of the rheology to be done in half of the channel.

It is possible to apply a variable temperature as a boundary condition in FLUENT®.

To do so we need to have the temperature as a function of coordinate system. To find this

function, three different regressions were tried on the measured temperatures. The constants

and plot of a second order regression for the temperature data are shown in Figure 2.22. A

third order and a forth order regressions are also tried and shown in Figures 2.23, 2.24 and

2.25. Since the temperature data is almost symmetric, the third order regression cannot

follow the temperature trend. Between the second order and forth order regressions, second

order regression was chosen to apply the thermal boundary conditions with. This choice is

due to the existance of the non physical maximum and minimum temperatures that can be

seen in Figure 2.25.

The second order regression has been implemented as a thermal boundary condition

with the following user defined function:

DEFINE_PROFILE(Temp_Profile,t,i)

{

real xx[ND_ND];

real x;

real y;

face_t f;

begin_f_loop(f,t)

{

F_CENTROID(xx,f,t);

x=xx[0];

y=xx[1];

F_PROFILE(f,t,i)=273.2+324.564-5.97*y-401.153*x-

56.529*x*y-1050.0*y*y-2213.0*x*x;
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Created with Mathcad Express. See www.mathcad.com for more information.

Figure 2.19: List of measured points and their respective temperatures imported in Mathcad
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Temp (( ))

Created with Mathcad Express. See www.mathcad.com for more information.

Figure 2.20: Position of the imported point into Mathcad as seen normal to the xy-plane
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Temp (( ))

Created with Mathcad Express. See www.mathcad.com for more information.

Figure 2.21: Position of the imported point into Mathcad as seen from a 45 degrees (the
vertical axis is the temperature)



30

=F⟨⟨1⟩⟩

“Coefficient”

324.564

−401.153

−5.97

−56.529

− ⋅2.213 103

− ⋅1.05 10
3

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

≔Temperature (( ,xx yy)) +++++F
,1 1

⋅F
,2 1

xx ⋅F
,3 1

yy ⋅⋅F
,4 1

xx yy ⋅F
,5 1

xx2 ⋅F
,6 1

yy2

Temperature (( ))

Temp (( ))

Created with Mathcad Express. See www.mathcad.com for more information.

Figure 2.22: Second order regression of the temperature data in Mathcad
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Figure 2.23: Third order regression of the temperature data in Mathcad
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Figure 2.24: Parameters for the forth order regression of the temperature data in Mathcad
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Temperature (( ))
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Created with Mathcad Express. See www.mathcad.com for more information.

Figure 2.25: Surface plot of the forth order regression of the temperature data in Mathcad
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}

end_f_loop(f,t)

}

This UDF uses the position of each cell and assigns a temperature to that cell. When

attached to a surface for boundary condition, the temperature of that surface will be cal-

culated at the beginning of the simulation. Figure 2.26 shows the applied temperature as a

boundary condition on the surface of the die. One important assumption made here is that

the same temperature contour is applied to both the top and button of the die. This as-

sumption may not be true if the buttom and top halves of the die have completely different

temperature control system.

The phenomenon that was observed during the extrusion of LCPs from the coat-hanger

die was the higher velocity of material coming out of the middle of the die. This phenomenon

causes the material to have ripples in the middle and be stretched in the corners. Figure

2.27 shows how higher velocity of the material in the middle of the die affects the extruded

film. To model this phenomenon and ideally change the design of the flow channel to have

a uniform velocity at the lip of the die, the effect of the temperature on the viscosity of

the LCP had to be considered. As can be seen in Figure 2.28, the velocity of the extrudate

reduces about 1cm/s from the middle of the die to the end of the die. This graph shows

the velocity profile at the lip of the die from the middle to the end.

Figure 2.29 shows the velocity vectors for when the effect of temperature on the viscosity

is considered. Higher temperature in the middle part of the die has reduced the viscosity

from the design point. The coat hanger die is designed to operate in an isotropic condition

and this simulation shows that a better temperature control system is needed to keep the

temperature of the die constant. This can be done using additional heating cartridges close

to the corners of the die lip. It should be noted that in this simulation only one half of the

die is modeled. In the case of a big difference in the temperature distribution between the

left and right half of the die, all the die should be modeled.

2.3 Rheological modeling on the structured and unstruc-

tured meshes for the directionality modeling

For this part of the simulation, ANSYS® DesignModeler is used for making the geometry

of the flow domain and meshing is done using the ANSYS® Meshing software. Since the

same mesh generated for solving the rheology is also used to model the directionality, the
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Figure 2.26: Temperature boundary condition from the measured data
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Figure 2.27: Film extrusion showing higher velocity at the middle of the die

Figure 2.28: Velocity profile at the lip of the die (from the center to the edge)
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Figure 2.29: Velocity Vectors at the lip of the die

minimum size of the mesh should consider the minimum volume with aligned crystals. The

cell volume in the work of Goldbeck-Wood et al. [22] is considered to be (100nm)3. At this

scale it is possible to ignore the molecular entropic term and only consider the elastic torque

applied to directors. Previous researchers’ calculations with this method considered mostly

a bulk of fluid with structured quadrilateral mesh elements (ex. Lavine and Windle [23],

Goldbeck-Wood et al. [22]) . Moreover, the geometry of the flow domain was defined to be

a cube. As it is described later, the method developed here is able to account for complex

geometries and is not restricted to one type of mesh. As a result, it is possible to use suitable

shapes of elements with arbitrary orientation in an unstructured mesh for simulating the

rheology. To demonstrate the ability of the code to handle different mesh structures, the

geometry of the domain is meshed with different element types and the results are compared.

Here the rheology of the polymer is simulated using ANSYS® FLUENT® Release 13.0.0.

ANSYS® FLUENT® is a finite volume based flow solver that can simulate the flow on

a wide variety of meshes. This ability makes it possible to simulate the flow in complex

geometries and allows the use of different types of meshes in one simulation. To model the

rheology of the polymer, different rheological models have been tried. Based on the die

swell data and existing experimental measurements described in Ahmadzadegan et al. [24],
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(a)

(b)

Figure 2.30: (a) Structured and (b) Unstructured meshes

the Power-law model described in FLUENT [21] is chosen here. Equation 2.4 describes the

relationship between stress and strain in this model.

τ = kγ̇n (2.4)

In this equation, τ is the stress tensor and γ̇ is the rate of deformation tensor. k and n are

the flow consistency index and power-law index, respectively. The details of this choice are

explained in Ahmadzadegan et al. [24]. In this study k = 1864 kg.sn−2

m and n = 0.4651. After

simulating the rheology, a user defined function (UDF) is coded to extract the rheological

data from the solution and calculate its effect on the orientation of crystals.

As mentioned before, modeling rheology is done using ANSYS® FLUENT® Release

13.0.0. The geometry of the flow is modeled in a 2D channel and meshed with triangular

and quadrilateral mesh for comparison. Since in this study modeling directionality is of

prime interest and the geometry of the flow channel is very simple, the first order upwind

scheme is used in the isothermal solver. The more accurate the rheology modeling, the

more accurately one can predict the effect of rheology on the crystals. For modeling the

fluid, capillary rheometer data using a LCR 6000 capillary melt rheometer is used for a LCP

material in 350◦C temperature. Capillary rheometry data shows a close match between the

stress-strain curve and the power-law model and as a result, the power-law model with flow

consistency index of k = 1864Pa.sn and a power-law index of n = 0.4651 is considered.

Figure 2.30 shows the structured and unstructured mesh used for this study.



39

2.4 Die Swell Measurements

2.4.1 Numerical Simulation

ANSYS ® POLYFLOW ® can simulate the free surfaces of the extrudate after exiting the

die which makes it ideal for simulating the die swell. There are two boundary conditions

that needs to be satisfied for a successful simulation of the free surfaces in a steady state

flow [25]. First, the normal velocity of the surface should be equals to zero.

v � n = 0 (2.5)

In this equation, v is the velocity vector and n is the vector normal to the surface. The con-

dition represented by equation (2.5) is known as the kinematic condition. Second boundary

condition on the surface of the extrudate is known as the dynamic condition which indicates

there is no normal force on the surface.

f = 0 (2.6)

Outside the die the position of the surface of the extrudate is also unknown and needs

to be calculated as an output of the simulation.

Since the numerical simulation here is going to be validated using the experimental

results presented later in the design of the extrusion die section, the same geometry that is

used in the experiment is used. The die is designed such that flow of the LCP is happening

at high Weissenberg numbers (We). This means that the elasticity of the material is

important and should be taken into account. There are several viscoelastic models available

in ANSY S®POLY FLOW®. A method of choosing between these viscoelastic models is

to use the shear viscosity vs. shear rate curve. If at a typical shear rate of the flow through

the die the viscosity is constant, then the Maxwell model or the Oldroyd-B is recommended.

But, if the fluid shows shear thinning around this shear rate, then the Phan Thien-Tanner

(PPT) or Giesekus model is recommended. The shear viscosity vs. shear rate curve for

the LCP is shown in Figure 2.31. This data is from a test using LCR6000 capillary melt

rheometer. The shear rate at the wall, γ̇w, during extrusion changes from 350 s−1 to

5200 s−1, which is in the shear thinning section of the curve in Figure 2.31. Based on this

calculation, the PTT or Giesekus models are more appropriate to simulate the rheology

inside the die. The single mode model is used here and the relaxation time is of the order

of 1
γ̇w

.

Since LCPs are known to have lower viscosities compared to conventional polymers, it

is rational to consider if the inertia of the fluid is important during the flow. Inertia effects
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Figure 2.31: Shear viscosity vs. Shear rate for LCP at T = 350◦C

are characterized by the Reynolds number.

Re =
ρV D

η
(2.7)

The Re of the flow in the die changes between Re ∼ 0.02 to Re ∼ 4. Re is even lower for

PP due to its higher viscosity. This means that the viscous effects are dominant compared

to the inertia effects. To check the importance of inertia effect as compared to the elastic

effect, a Mach number is used as follows;

M =
√
We.Re (2.8)

When the effect of inertia is important, the flow field is both affected by inertia and

viscoelastic forces. This adds more nonlinearity to the simulation and causes convergence

difficulties. In this study, since the Mach number is small and none of the inertia effects

has been observed in the experimental measurement (i.e. delayed die swell), the effect of

inertia is neglected. This can be done by choosing the value of zero for the density of the

polymer and not considering the inertia term. Ignoring inertia terms remove some of the

nonlinearity and also makes the calculation cheaper computationally.

Figure 2.32 shows the mesh used to simulate the flow inside and outside the capillary

die. Inside the flow channel the solver needs to solve the Navier-Stokes equations in addition

to the energy equation. On the other hand, in the body of the die, only the conduction heat

transfer exists and the quality of the mesh is less important. Based on this consideration,

inside the flow channel, mostly structured mesh was generated with the consideration of
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Figure 2.32: Generated mesh on the capillary die

the streamlines and outside the flow channel unstructured mesh was generated to reduce

the number of mesh and computational cost of the simulation.

2.4.1.1 Phan Thien-Tanner Viscoelastic Model

Since in this case, elasticity of the polymer is important in the flow through the capil-

lary, a viscoelastic model needs to be used to model the rheology. For incompressible and

isothermal flows the momentum and continuity equations are as follows:

∇ � v = 0 (2.9)

−∇p+∇ � T + f = ρa (2.10)

In these equations v is velocity, a is acceleration, f is volume force and T is the extra-stress

tensor. For viscoelastic fluids, the extra-stress tensor is composed of a viscoelastic T1 and

a purely viscous T2 components.

T = T1 + T2 (2.11)

The stress tensor is coupled to the momentum and continuity. The purely viscous part

of the extra-stress tensor, T2, is optional but recommended for viscoelastic fluid. It helps

with stability of the solution and is defined as:
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T2 = 2η2D (2.12)

where D is the rate of deformation tensor and η2 is the viscosity for the Newtonian com-

ponent. In ANSYS ® POLYFLOW ®, a viscosity ratio, ηr, defined as η2/η relates the

viscosities as

η1 = (1− ηr)η (2.13)

and

η2 = ηrη (2.14)

where, η1 is the viscoelastic coefficient of the total viscosity η. In ANSYS® POLYFLOW®,

the equations relating the stress, velocity, pressure and moving boundaries are coupled and

the system of equations are solved using a full Newton-Raphson scheme. The constitutive

equation for the stress T1 is calculated from the following differential equation:

g(T1) � T1 + λ
δT1

δt
= 2η1D (2.15)

The relaxation time λ is defined as the required time for the shear stress to reduce

to about 1/3 of its equilibrium value when the strain rate vanishes. For Newtonian flows

the relaxation time is zero and high values for the relaxation time increase the memory

retention.

The term δT/δt is an objective derivative defined as a linear combination of lower and

upper-convected derivatives

δT

δt
=
ξ

2

∆
T1 +

(
1− ξ

2

)
∇
T1 (2.16)

for 0 ≤ ξ ≤ 2.
∆
T1 is the lower-convected time derivative of T1 and

∇
T1 is the upper-convected

time derivative of T1.

∆
T1 =

DT1

Dt
+ T1 �∇vT +∇v � T1 (2.17)

∇
T1 =

DT1

Dt
−T1 �∇v +∇vT � T1 (2.18)

In case of the Phan-Thien-Tanner model [26], T1 is calculated from



43

exp

[
ελ

η1
T1

]
T1 + λ

[(
1− ξ

2

)
∇
T1 +

ξ

2

∆
T1

]
= 2η1D (2.19)

and T2 is calculated from equation 2.12. In this model, ξ and ε are material properties of the

polymer that control the shear viscosity and elongational viscosity, respectively. Defining a

non-zero ε causes a bounded steady extensional viscosity. An increasing ε reduces or even

cancels the strain hardening while ξ affects shear thinning properties as well as the amount of

second normal stress differences. Strain hardening occurs when ε is approximately between

10−3 and 10−2 and vanishes at ε ≈ 10−1.

As can be seen there are several material properties to be defined for the PTT model.

These properties are ξ, ε, ηr, η and λ. Since in this study the effects of the inertia is ignored,

the density of the polymer is set to zero (ρ = 0). As mentioned earlier, it is important to

add a purely viscous term to the extra stress tensor for stability reasons. This is especially

important for the PTT method and the ratio of the Newtonian viscosity, η2, to the total

viscosity, η, must be greater than or equal 1/9 (ηr ≥ 1/9).

In viscoelastic flows with high We numbers, it is crucial to use an evolution scheme

on the volume flow rate or relaxation time. The start of the evolution should be with

a We ≤ 0.3. In the case of extrusion with free surface boundary conditions, it is also

recommended to apply evolution to the moving boundaries. This technique progressively

adds the effect of the kinematic condition into the system. For 2D viscoelastic flows with

a single mode, it is possible to use the so-called 4x4-SU interpolation, which combiles a

high discretization level for the extra-stress tensor and the streamline upwinding method.

This combination is robust for solving problems where elasticity plays a significant role,

especially in the presence of flow singularities, such as die lips [25].

2.4.1.2 Rheological Parameters

For finding the rheological parameters, the information presented in Figures 2.31 and 2.33

were used in POLYMAT. In POLYMAT it is possible to iterate and find the best rheological

properties for a specific problem. There are many consideration to be taken into account

for finding the right rheological properties. First of all, the experimental measurements

of the shear viscosity (Fig. 2.31) and the storage and loss modulus (Fig. 2.33) needs

to be imported to POLYMAT. Based on how important various rheological parameters

are, it is possible to change the way the curve fitting will take place. For example in 2D

extrusion, velocity rearrangement and normal stress differences affect the die swell. The

velocity profile is basically the result of viscous forces and the normal stresses are the result
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of viscoelasticity. The effect of strain thinning and strain hardening on the other hand is

negligible in extrusion. For the best curve fitting inside POLYMAT, there are some changes

done in the fitting parameters for the LCP as follows:

� Range of relaxation times: 0.001 < λ < 0.1

� Window of shear rates: 0.1 < γ̇ < 11000

� Window of frequencies:0.1 < f < 200

� Weight of shear viscosity curves: 1.0

� Weight of G′ and G′′ curves: 10

Based on these inputs, the fitted parameters for the LCP are

� η = 4085 Pa.s

� λ = 0.316E − 02 s

� ε = 0.8603E − 02

� ξ = 0.8535

� ηr = 0.1712E − 02

2.4.2 Experimental Measurements

To measure the die swell of polymers experimentally, two different extrusion dies with 5mm

and 20mm land lengths were designed and built. Figures 2.34a and 2.34b show the two

solid parts of the die. The extruder used in this experiment was a DSM Xplore Micro 15cc

twin screw compounder (Figure 2.36). Using the upper part alone will give a die with land

length of 5mm and using the upper and lower parts together, will give a circular die with

a land length of 20mm. The two part attach together using four bolts from the buttom

of the lower part. The flow channel in the case of 20mm die will align perfectly to ensure

a smooth channel without steps. Figure 2.35 shows a cross section of the melt pipe that

guides the flow of polymer from the extruders to the die.
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(a) (b)

Figure 2.34: Die geometry (a) Wireframe (b) cross section

Figure 2.35: Melt pipe connecting the extruder to the die.
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Figure 2.36: DSM Xplore Micro 15cc twin screw compounder

2.4.2.1 ISO Standard for Extrudate Swelling

Based on Section 7.9 of the International Standard ISO-11443 [27], Measurements of extru-

date swelling, die swell depends on many factors including:

� Test temperature

� Time since extrusion

� Manner of cooling

� Length of the extrudate

� Capillary die length

� Diameter and entry geometry

� Barrel diameter

and the results obtained can be very sensitive to the method and details of the experiment.

As a result, the data on the extrudate swell is only comparable if all the testing conditions

are identical.

There are two methods of measuring the die swell.

1. Measuring the diameter of the extrudate after it solidifies using micrometers
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2. Using a photographic or optical method that does not involve any mechanical contact

with the extrudate

In this study the second method is used. There are some important steps to be taken

to eliminate the effect of the gravity on the die swell as follows:

� Any extrudate attached to the die should be removed as close as possible to the die

� Extrudate length at the time of the measurement should not be longer than 5cm

� Each measurement should be done at the same position and distance from the die lip

� To minimize the effect of the temperature drop on the extrudate, it is possible to use

a confined temperature controlled chamber to extrude in

2.4.2.2 Design of the Extrusion Die

A characteristic shear rate for axisymmetric flows can be considered as the shear rate at

the wall of the die.

γ̇w =
4Q

πr3
(2.20)

The design of the extrusion die is done such that the extrusion happens when vis-

coelasticity is important. The importance of the viscoelasticity of a flow is measured using

Weissenburg number (We). We is defined as the product of relaxation time of the fluid

and shear rate of the flow. It compares the elastic forces to the viscous effects.

We = λ× γ̇ (2.21)

For a flow with We < 1 the effect of viscosity is dominant and for We > 1 the effect of

the elastic forces are more important. An appropriate relaxation time in which the polymer

changes from viscous to elastic can be found from the inverse of the frequency at which the

elastic modulus, G′, and the loss modulus, G′′, intersect. To obtain the G′ and G′′ for LCP

material, an oscillatory rheometer, AR2000, was used. The Figure 2.33 shows how G′ and

G′′ changes with the shear rate.

The mass flow rate of the polymer is chosen so that the We is always more than 1.

We for the LCP changes from 60 to 550. To investigate the effect of the relaxation time of

the polymer, two different land lengths were chosen for the die. The two land lengths were

chosen so that the time spent inside the land length in some cases is less than the relaxation

time and in other cases more than the relaxation time. Based on this rational, ∆x = 5mm

and ∆x = 20mm were chosen.
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The die was also thermally modeled in FLUENT®to determine the type and power of

the heating elements needed to keep the flow isothermal. Figure 2.37 shows the contours of

temperature in the middle surface of the die with and without the heating elements.

Figures 2.38 and 2.39 are the drawings of the two parts of the die. The part in Figure 2.38

has an abrupt contraction with the land length of 5mm. The part in Figure 2.39 attaches

to the buttom of the the first part to form a die with a 20mm land-length. Two different

heater bands are used to keep the temperature constant during the extrusion process.
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(a)

(b)

Figure 2.37: Temperature profile (a)with and (b) without heating elements
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Figure 2.38: 5mm Capillary Die
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Figure 2.39: 15mm Capillary die attachment
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Table 2.5: Temperature from the hopper to the lip of the die

Zone 1 (◦C) Zone 2 (◦C) Zone 3 (◦C) Lip of the Die (◦C)

LCP 330 340 350 350

PP 198 215 232 232

2.4.2.3 Experimental Procedure

To compare the die swell of the LCP with conventional polymers, the experiment was run

using LCP and Polypropylene Exxon PP1042. PP was chosen because of the fact that both

rheological and die swell experiments are available in the literature on this polymer, Huang

and Tao [28].

A nine megapixel camera in macro mode was used to take the pictures and two telescopic

lights were shined from two sides to the extrudate to be able to capture sharp pictures with

maximum shutter speed. A metal measuring stick was placed as close as possible to the

lip of the die for reference and image post-processing. In this experiment the extrudate

is leaving the die at room temperature and solidifies. Figure 2.40 shows the setup of the

experiment.

As can be seen in Figure 2.40, there is a heating element around the die and a thermostat

close to the lip of the die to control the temperature. For PP the temperature at the lip is

set to 232◦C and for LCP to 350◦C. It is very important to keep the temperature of the

entrance of the screws well below the melting temperature of the polymer. This keeps the

pellets solid and makes it possible for the polymer to easily enter the gaps between screws.

Table 2.5 shows the gradient of the temperature from the hopper to the lip of the die for

LCP and PP. These temperatures are shown for the zones in Figure 2.36 as well as the lip

of the die.

The procedure for the experiment started with running a purging compound (a variation

of HDPE) through the machine to clean the screws and the die. This step was done to clean

the die from the left over polymer residue. After the die temperature is stabilized based

on the temperatures in Table 2.5, LCP pallets was added to the hopper and run through

the die with 5mm land length. The rotational speed of the screws was changed for each

land length and material. To find the mass flow rate of the flow for each rotational speed,

the weight of the extrudate was measured during one minute. This measurement was done

twice to reduce the error associated with the measurements. The four experimental graphs

in Figure 2.43 shows how die swell is changing as a result of increasing the shear rate for

PP and LCP. The die swell results are extracted from several high resolution pictures taken
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Figure 2.40: Setup of the experiment
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(a) DS=1.773 (b) DS=1.779 (c) DS=1.831

(d) DS=1.511 (e) DS=1.569 (f) DS=1.577

Figure 2.41: Die swell for PP at different shear rates.

during the extrusion. ImageJ image processing software was used later to calibrate, scale

and measure the diameter of the extrudate as shown in Figures 2.41 and 2.42.

Table 2.6 lists the die swell measured with ImageJ for different average velocities. Av-

erage velocities are calculated based on the mass flow rate of the polymer. The density of

the LCP is ρ = 1.6 g/cm3 and the density of the PP is ρ = 0.9 g/cm3 . The four graphs in

Figure 2.43 shows how die swell is changing by increasing the shear rate for PP and LCP.

As can be seen, the die swell for the LCP is very small and in some cases smaller than one

(negative die swell).
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(a) DS=0.997 (b) DS=0.988 (c) DS=1.013

(d) DS=1.028 (e) DS=1.039 (f) DS=1.062

Figure 2.42: Die swell for LCP at different shear rates.
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Table 2.6: Die swell ratio for PP and LCP for different average velocities and land lengths

Land length (mm) Average velocity (cm/s) Experimental Die swell ratio

PP

5

3.174 1.773
4.262 1.825
5.698 1.799
9.792 1.856
12.147 1.831

20

1.727 1.511
2.916 1.53
4.857 1.569
6.102 1.579
8.367 1.577

LCP

5

7.209 0.997
13.403 0.994
16.606 0.988
22.747 0.981
41.647 1.013

20

5.816 1.028
11.128 1.016
16.599 1.039
26.029 1.047
50.467 1.062
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(a) DS=1.03 (b) DS=0.987 (c) DS=0.982

(d) DS=0.972 (e) DS=0.956 (f) DS=0.789

Figure 2.44: Velocity profile at the Lip of the Die
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2.4.3 Results

Table 2.6 lists the die swell measured with ImageJ for different average velocities. Average

velocities are calculated based on the mass flow rate of the polymer. The density of the

LCP and PP are ρLCP = 1.6 g/cm3 and ρPP = 0.9 g/cm3 , respectively. As can be seen, the

die swell for the LCP is very small and in some cases smaller than one (negative die swell).

Figure 2.44 shows the streamlines inside the die for LCP material in both cases of 5mm

and 20mm land lengths with the respective amount of die swell for each case. Comparing

the numerical simulation of the die swell for the LCP to the experimental results show a

good match at the shear rate that the material properties were obtained. As the shear rate

increases, the simulation predicts increasingly smaller die swell whereas in the experimental

results the die swell remains almost constant. Authors believe that this is the result of

morphological structure of the LCP inside the die. This means that the rheology of the

LCPs can not always be simulated with a viscoelastic rheological model and morphological

structure should also be considered for LCPs.



Chapter 3

Modeling Directionality

3.1 Introduction

Although amorphous and semi-crystalline polymers become isotropic in the molten state,

LCPs keep their orientation even in the molten state and the interaction between crystals

plays an important role in rheology of LCPs. Figure 3.1 shows the difference between

amorphous, semi-crystalline and LCPs in solid and liquid states. As can be seen, LCPs

keep their directionality even in the molten state.

The anisotropic properties of LCPs causes some unique behaviors that affect their pro-

cessing conditions (Donald et al. [6]). Among these behaviors are low viscosity compared

to conventional polymers and very small or no die swell during the extrusion. Moreover,

because of the anisotropy of LCPs, the orientation of these crystals determines the prop-

erties of the final manufactured product. As an example, during the extrusion processes,

crystals align themselves parallel to the direction of shear. But unlike amorphous polymers,

molecules in LCPs have higher inertia which opposes the brownian motion of molecules and

keeps their orientation even after exiting the die. This phenomenon makes the simulation of

directionality inside the die more valuable as the directionality remains almost intact even

after exiting the die. Although most of the theoretical research for modeling the rheology

and orientation of LCPs is based on small molecule liquid crystals (SMLCs), the results of

those studies are also applicable to polymeric liquid crystals, especially in the case of shear

flows (Donald et al. [6]). The theories for the simulation of the rheology of LCPs are still

evolving and researchers are trying to find more accurate theories (Han [7, 8]). The widely

used constitutive equations relating the stress and strain for liquid crystals are based on the

Leslie-Ericksen theory which was developed by Leslie [9] based on the work of Ericksen [10]

61
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Figure 3.1: Comparison between amorphous, semicrystalline and liquid crystalline polymers
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and Frank [11]. These equations consider the effect of crystals on the stresses to be contin-

uous and defines a vector field called the director field. The equations are very complicated

and only simplified variations of them, namely transversely isotropic fluid (TIF) equations

have been solved numerically on simple geometries (ex. Baleo et al. [12], Chang et al. [13]).

These simplified equations have some restrictions as follows:

1. Flow domain is considered to be a mono-domain without disclinations

2. Due to the high viscosity approximation, elastic stresses are considered negligible

compared to viscous stresses

3. The flow is considered steady and isothermal

These assumptions pose a significant restriction to the amount of experimental data avail-

able for verification since most of the experimental data on the rheology of LCPs are based

on the observation of the disclination lines between polarized glasses. The other restriction

of simulating the TIF equations numerically is that the convergence of these equations is

very limited, especially in complex geometries. Since the geometries of the extrusion dies

are normally complex and cannot always be discretized with a structured mesh, a practi-

cal and simplified method for simulating and approximating directionality on unstructured

mesh is highly desirable. The method studied in this paper has a Monte-Carlo basis and

can be applied to complex geometries. The other advantage of this method is the abil-

ity to be used on a combination of structured and unstructured meshes with actual fluid

parameters without convergence concerns. As a result, it can be applied in practical sit-

uations. There are some major difficulties associated with modeling the directionality on

unstructured meshes. The most important one is extending the director calculations to un-

structured meshes. This problem is addressed here by treating each cell locally. This means

that each cell interacts with only its neighbors. Although unstructured meshes introduce

some errors associated with averaging of quantities, they are the only method of discretizing

the complex geometries of dies.

3.2 Modeling LCPs in macroscopic scale

Goldbeck-Wood et al. [22] introduced a method for modeling the directionality of crystallines

on a macroscopic scale based on the Monte-Carlo approach. This hybrid method based on

two separate parts. First, it considers the rheology of LCPs to be close to conventional

polymers and simulates the rheology with conventional methods (ex. RANS). The second
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part is the calculation of directionality assuming their directionality can be approximated

by equations for small molecule liquid crystals. These two parts of the simulation are

performed independently. As a result, four different calculations need to be done for the

flow to be fully simulated. (a) At first the rheology of the polymer should be simulated

using the existing rheological models. This step is important because the closer simulated

rheology is to real flow, the more accurate the directionality modeling will be. In this step,

the flow domain is meshed. Care should be taken when meshing the domain since the same

cells in the mesh are going to be used later as the smallest area with aligned crystals. (b)

After the rheology is simulated, velocity vectors and their gradients are used for the next

step. This method assumes that each cell is small enough to have a preferred alignment of

crystals throughout its volume. A vector representing the alignment of crystals is defined

for each cell. These vectors are called directors, ~n, and they are defined such that they have

sense but no direction, as in crystals. This means ~n = −~n. In case of liquid crystalline

polymers, rigid monomers can align in a region to form a nematic phase with preferred

direction parallel to ~n as described by Donald et al. [6]. After extracting the results of

rheological modeling, in the second step these rheological parameters are used to find the

effect of rheology on directors using the evolution equation. (c) The third step is to apply

the effect of Frank elastic energy on the directors. In this step, elastic stresses in the material

are applied to the directors. (d) The last step is to count for the translation of crystals with

the flow of the polymer. For this step a new method is developed that can be applied to

each cell. The rest of this section describes how each of these steps are calculated during the

simulation. The final orientation can be calculated by combining the effects of all previous

steps.

Figure 3.2 shows all the steps needed for the orientation modeling in a flowchart.

3.3 Initial and Boundary Conditions

Three types of boundary conditions namely planar, homeotropic and tilted can be applied

to the directors on the boundaries of the flow. These boundary conditions are shown in

Figure 3.3. These orientations for directors can be achieved experimentally by treating the

surface of the wall [29]. In this study, the directors on the boundaries are not fixed and

are treated the same as the interior cells with less neighboring cells (for boundary elements

i = 3 and for the corner cells i = 2). The results of Frank elastic energy is presented in the

bulk of fluid far from the boundaries. In two dimensions, homeotropic and planar boundary

conditions do not need any extra information to be defined. In three dimensions, the planar
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Figure 3.2: Orientation calculation flowchart

Homeotropic Planar Tilted

n
n n

Wall

Crystals

Figure 3.3: Boundary conditions on directors

boundary condition needs one angle, θ, and the tilted boundary condition needs two angles

θ and φ to be defined. Effect of these boundary conditions propagates inside the bulk of

fluid and affects the orientation of directors inside.

The boundary conditions for the rheology are velocity inlet for the entrance and outflow

for the exit. The no slip condition is applied to all other wall boundaries.

3.4 Franks Elastic Energy

The equation for the curvature distortion energy in liquid crystals is developed by Frank

[11] and Oseen [30]:
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F =
1

2
k11(∇ � ~n)2 +

1

2
k22(~n �∇× ~n)2 +

1

2
k33(~n×∇× ~n)2 (3.1)

in which k11, k22 and k33 are material constants known as Frank elastic constants for splay,

twist and bend respectively and ~n is the director. In simple geometries, Goldbeck-Wood

et al. [22] solved this equation with different values for splay, twist and bend constants.

Frank elastic constants are in the order of 10−10N (Hobdell et al. [31]) and the relation

between Frank elastic constants and molecular properties of liquid crystals are derived by

Odijk [32] and Meyer et al. [33].

k11 ≈
(

7

8
π

)(
kT

d

)
Φ

(
L

d

)
k22 ≈

(
kT

d

)
Φ

1/3R
1/3
a (3.2)

k33 ≈
(
kT

d

)
ΦRa

In equation 3.2, L is the contour length, k is the Boltzmann constant, Ra is the ratio

of q (persistence length) to the diameter d of the chain, Φ is the volume fraction which

is considered to be one when dealing with thermotropic liquid crystalline polymers and T

is the temperature. For LCPs, Frank elastic constants are not equal and it is shown by

Hobdell and Windle [34] that more features of LCPs can be modeled when a larger value

of the splay constant is considered compared to the bend and twist constants. In small

molecule liquid crystals, Frank elastic constants are almost equal.

In this study, it is assumed that inside the polymer, the average alignment of crystals in

each cell can be represented by a director. Moreover, for the sake of simplicity in numerical

calculations, Frank elastic constants are considered to be equal. This constant here is

assumed to be the average of the three Frank elastic constants derived by Hobdell et al.

[31]. In this special case, equation 3.1 can be approximated by equation 3.3 and can be

applied to a meshed geometry. (Lavine [35])

F =
k

2

n∑
i=1

sin2 (∆θi) (3.3)

In equation 3.3, k = k11 = k22 = k33 and the summation is over all the neighboring

cells which have a common surface with the central cell. ∆θi is the difference between the

angle of the central cell and its i -th neighbor. The torque applied to the central cell can be

calculated by taking the derivative of the distortion energy with the angle ∆θi.
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~Γ =
dF

d (∆θi)
= k

n∑
i=1

sin (∆θi) cos (∆θi) (3.4)

The torque,~Γ, is the result of distortion in the liquid crystals. Since for the two dimen-

sional case the direction of the torque vector is always perpendicular to the plane of flow,

it is possible to do the algebraic summation over all the neighbors and find the resulting

torque applied to the central cell. In contrast, in the three dimensional case the effect of

each neighbor on the central cell should be calculated separately and added like vectors.

In three dimensional geometries the effect of each neighbor on the central cell will result

in a torque ~Γi which is normal to the plane that passes through the two directors having

the same origin. As a result, the total torque ~Γ applied to the central cell is the vector

summation of these individual vectors (~Γi).

After finding the resultant torque applied to the central cell, one can find the rate of

change of direction of the director as

~̇n =
~Γ

ζr
(3.5)

in equation 3.5 ζr is the rotational viscosity which is based on Doi and Edwards [36] for

thermotropic liquid crystalline polymers (Φ = 1) and can be approximated as

ζr = βηR2
a (3.6)

in which β is an empirical constant in the order of 10−4(Larson [37]). For a specific

Vectra-A material with a typical viscosity of η = 10−3Pa.s, rotational viscosity is about

ζr = 10Pa � s (Goldbeck-Wood et al. [22]). Figure 3.4 shows the flowchart of the process of

applying the Franks elastic energy to the random generated directors.

3.5 Evolution Equation

Evolution equation describes the effect of the rheology on directors. This equation considers

the directors as if they were pinned on their center of mass and can only spin without

translation as described in Donald et al. [6]

~̇n = ~n · ω + λ (~n ·A− (~n ·A · ~n)~n) (3.7)

The first term on the right hand side of equation 3.7 accounts for the effect of the vorticity

tensor, ω, and the second term is to calculate the effect of the strain rate tensor, A, on the
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Figure 3.4: Franks elastic energy minimization flowchart

director ~n. ω and A are antisymmetric and symmetric parts of the velocity gradient tensor.

λ is the tumbling factor defined in Ericksen [10] which shows the relative importance of

the effect of the vorticity tensor to the strain rate tensor. A physical interpretation of the

tumbling parameter, λ, can be sought if ellipsoids are considered instead of directors in

the field. With this assumption, for the case of λ ≤ 1, λ can be related to the molecular

characteristics of the LCP chains.

λ =
R2
a − 1

R2
a + 1

(3.8)

In equation 3.8, Ra is the ratio of the length of the major axis of ellipsoids to the length

of the minor axis which in the case of the liquid crystalline molecules will be the ratio of the

persistence length over the diameter of the chains. Three different regions for λ are normally

considered. λ < 1 is associated with the case that the effect of vorticity tensor dominates

and tumbling of directors occurs. in this case, ellipsoids are close to spheres.λ = 1 is the

pseudo-affine case. Based on discussions of Lavine and Windle [23], the value λ = 1 is more

suitable for thermotropic liquid crystalline polymers.λ > 1 which can not be interpreted

using equation 3.8, is the case which the effect of the strain rate tensor is dominant and gives

a stable alignment with a positive value of Leslie angle (Larson [38]). Solving the vector
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equation 3.7 gives the rate of change of the director n with time in three principal directions

namely dnx
dt ,

dny

dt and dnz
dt . By having the time steps of the simulation, ∆t, changes in the

director, ~dn, and its three components dnx, dny and dnz can be calculated for each cell.

3.6 Translation of Directors

Evolution and Frank elastic energy equations assume directors to be fixed in place and can

only spin around their center of mass. However, in real flows, directors will be translated

with the bulk of material which needs to be accounted for in the numerical simulation.

In the work of previous researchers like Lavine and Windle [23], structured meshes were

considered and the Poiseuille flow was considered parallel to the x-direction. This method

can not take into account the real flow phenomena like vorticies and separations. Since

in this study different element types and orientations are considered, a new method for

simulating the translation of directors is developed.

The translation of directors is calculated from one element to the neighboring ones

based on the direction and velocity of the flow for each element. Figure 3.5 shows a simple

case in which a quadrilateral central cell, c, is surrounded by four other cells i = 1 · · · 4.

The method used here assumes that the velocity ~V transfers bulk of fluid to cell i only if

~V � ~Ai > 0. So for the mesh shown in Figure 3.5, bulk of fluid is transferred from central

cell to the 1st (i = 1) and 2nd (i = 2) neighbor due to the acute angle between ~V and ~Ai.

The important step in this simulation is that the changes needed for all the cells should be

calculated and added together before applying it to the neighboring cell because of the fact

that each cell may receive crystals from more than one neighbor. It is also important to

consider the value of the velocity in calculating the transfer of fluid. Here the velocity of

fluid in each cell is compared to the distance between cell centers to determine how each cell

affects its neighbors. This method can be applied to cells regardless of their number of faces

in two and three dimensions. An important consideration here is that the average time step

of the simulation should be chosen such that the translation of directors is comparable to

the average distance between cell centroids of neighboring cells.

3.7 Order Parameter

Characterization of the orientation in liquid crystals is usually done using order parameters.

Order parameters are defined for different phases of liquid crystals and play an important

role in describing the phase transitions between mesophases.
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Figure 3.5: Translation of directors

Nematic liquid crystals can be represented as a pool of rigid rods. If ~a represents the

long axis of these rods, then the ordering in the system considered can be characterized

by the local mean quadric combination of the components of vectors in a local coordinate

system. [39] [40]

Qij =
1

N

∑
N

(
aiaj −

1

3
δij

)
(3.9)

where N is the number of crystals in a small but macroscopic volume. (δij = 1 if i = j and

δij = 0 if i 6= j). Qij is the tensor order parameter which is a polar symmetric tensor of the

second rank. If the nematic crystals are distributed randomly then Qij = 0. In the case of

alignment of crystals in a preferred direction, the angles between vectors ~a decreases and

Qij increases. Since the director ~n in a nematic is the average orientation of crystals ,~a, the

tensor order parameter can be easily expressed through the director components

Qij = Q

(
ninj −

1

3
δij

)
(3.10)

where scalar Q represents the proportion of molecules that are oriented in a given

direction. Order parameter tensor Qij has some important properties.

� Since δij = δji and ninj = njni, order parameter tensor is a symmetric tensor.

� Due to the fact that ~n is a unit vector, trace of Qij is zero.

TrQij =
∑

i=(1,2,3)

Qii =
1

N

∑[
(n1)2 + (n2)2 + (n3)2 − 1

3
3

]
= 1− 1 = 0 (3.11)
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� Two previous properties of Qij reduce the number of independent components from

9 to 5

� In the isotropic phase Qisoij = 0

It is possible to prove this by transforming the components of the director to spherical

coordinate system.

n1 = sinθcosφ

n2 = sinθsinφ

n3 = cosθ

(3.12)

Then

Qij =

∫ 2π

0
dφ

∫ π

0
sinθdθf(θ, φ)

(
ninj −

1

3
δij

)
(3.13)

where f(θ, φ) is the probability function which represents the probability to find a

molecule with the orientation given by angles θ and φ. Clearly in the isotropic phase

f is a constant. The probability in isotropic case, f iso, should be normalized with

2

∫ 2π

0
dφ

∫ π/2

0
sinθdθ = 4π (3.14)

This means that f iso(θ, φ) = 1
4π . It should be noted that the integration over θ is from

0 to π/2 but the integration is multiplied by two to compensate for that. This is due

to the fact that ~n = −~n. It is easy to see that in the isotropic phase Q12 = Q23 = Q13

because of the integration over φ (Periodic function integrated over its full period).

For the diagonal components Q33 can be written as:

Q33 = 2
∫ 2π

0 dφ
∫ π/2

0 sinθdθf(θ, φ)
(
cos2θ − 1

3

)
=

4πfiso
∫ 1

0

(
cos2θ − 1

3

)
d(cosθ) = 2

3π(x3 − x)1
0 = 0

(3.15)

With a similar method it can be shown that other diagonal components are also zero.

� In a nematic case where the crystals are aligned in the direction of ~n (probate geom-

etry)

Qprobate =


−1/3 0 0

0 −1/3 0

0 0 2/3

 (3.16)

Proof for Q33 is

Q33 = n3n3 − 1/3 = 1− 1/3 = 2/3 (3.17)
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� In a perfectly aligned oblate arrangement where n3 = 0

Qoblate ==


1/6 0 0

0 1/6 0

0 0 −1/3

 (3.18)

These properties show that Qij is a very good candidate for the order parameter of

nematic liquid crystals. It is equal to zero for the isotropic alignment, it is sensitive to the

direction of the average orientation of the molecules as well as to the molecular distribution

of the crystals around their average orientation. Order parameter tensor is often used to

describe complicated situations in which the order parameter is a function of coordinates.

Other than that, a scalar order parameter Q is sufficient.

Q can be expressed in terms of the distribution function f . The distribution function

determines the mutual orientation of the crystals. If the long axis of a crystal is considered

to be in the z direction, then the orientation of the second crystal can be determined in a

cartesian coordinate system as:

a1 = sinθcosφ, a2 = sinθsinφ, a3 = cosθ (3.19)

The value f(θ, φ)dΩ is the probability that the long axis of the second rod placed inside

a little angle dΩ = sinθdθdφ formed around the direction (θ, φ). For nematic liquid crystals

the distribution function is independent of φ and f(θ) = f(π− θ) (non-polar crystals). For

nematic liquid crystals Q in equation 3.10 can be written as

Q =

∫
f(θ)

1

2

(
3cos2θ − 1)

)
dΩ =

1

2

〈(
3cos2θ − 1

)〉
= 〈P2(cosθ)〉 (3.20)

where P2 is the Legendre polynomials of the second order. It can be seen from equation

3.20 that if f(θ) has a sharp peak for θ = 0 and θ = π (all the crystals are aligned with

the director), then cosθ = ±0 and Q = 1. On the other hand, if the peak is at θ = π/2

(crystals oriented perpendicular to the director), then Q = −1
2 . And the third extreme case

the orientation of crystals is completely random which makes f independent of Q, then〈
cos2θ

〉
= 1

3 and Q = 0. Any case in between results in a value of Q between 0 and 1.

Q characterizes the molecular ordering in nematic liquid crystals and is called the scalar

order parameter.[41]
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3.8 Numerical Method

As described above, the directionality simulation used in this study has been implemented

with user defined functions (UDFs) in Fluent. UDFs are powerful tools available in AN-

SYS® FLUENT® to increase the capabilities of ANSYS® FLUENT®. Since all the

code written for UDFs are in C++ language, it is possible to utilize all the capabilities of

C++ programming and functions for the calculations. There is no readily available tool in

ANSYS® FLUENT® to simulate the directionality of fluid; as a result, UDFs are used

for this simulation. Three independent functions are used to calculate the effects of Frank

elastic equation, evolution equation and translation of directors. Vorticity tensor, ω, and

strain rate tensor, A, should be built by extracting the velocity gradients in different direc-

tions from the solver. Six user defined memories (UDMs) are needed in 2D to complete the

calculation. UDMs are defined to store a variable for each cell in ANSYS® FLUENT®.

It is possible to store the components of a director for each cell using UDMs.

To calculate the order parameter, a function called OrderParameter() was added to

the user defined function. This function uses the equation 3.20 and integrates over a range

of angles from 0 to π.

Four different sets of results are presented here to show the ability of the proposed

method in simulating the orientation of crystals. The first three sets of results are presented

to verify the isolated effects of Frank elastic energy, evolution equation and translation of

directors, respectively. The last set of results is the final solution which is the combination

of the first three calculations.

The effect of Frank elastic energy function on randomly generated directors are shown

in Figure 3.6. In this figure, there is no additional influence on the directors except for

their interaction with each other. This result shows what happens when liquid crystals are

left to annihilate in a quiescent condition. This figure shows a close-up of the directors.

Two of the disclinations that exist in the structured mesh are shown with the strength of

s = 1/2 and s = −1/2. Disclinations are less obvious on the unstructured mesh because of

the random placement of the directors in the domain. If the annihilation continues, all the

disclinations disappear and domain turns into a mono-domain[42].

The result of applying the effect of shear to a randomly generated director field on (a)

structured and (b) unstructured mesh are shown in Figure 3.7. As can be seen, the effect of

shear penetrated inside the fluid. Flow entering the channel from left has a uniform velocity

profile and as it moves through the channel, the boundary layer develops and makes the

directors aligned to the direction of flow. In both cases of structured and unstructured
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s=-1/2
s=1/2

(a)

(b)

Figure 3.6: Effect of Frank elastic energy on directors in (a) structured mesh and (b)
unstructured mesh
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(a)

(b)

Figure 3.7: Effect of shear on directors in (a) structured mesh and (b) unstructured mesh

meshes, the initial random directors remain undisturbed in the middle of the channel where

minimum shear occurs. An approximate line is drawn to show the extent of directors

affected by shear forces.

Figures 3.8 and 3.9 show how the described method for translating the directors affects

the director field. The meshes considered for this calculation are the same meshes used in

previous calculations and the initial condition is such that 1/3 of the directors are positioned

vertically and in the rest of the domain directors are positioned horizontally. The mass flow

rate is lowered in this calculation so that all the stages of translation of directors can be

visualized. As can be seen in Figure 3.9, the lower velocity of fluid in the boundary layer

is preventing the flow to transfer the directors to the nearby cells. On the other hand, the

higher velocity of the bulk of fluid in the center of the channel transfers the directors to

the downstream cells completely. The important consideration in this step is to choose the

mass flow rate and time step such that the average translation of directors in each time step

∆t will be almost the same distance as mesh sizes.

The last set of results shown in Figure 3.10 are the combination of all previous steps

with matching time steps. Frank elastic constant is k = 10−10 and ∆t = 10−4s. The

boundary condition for the inlet is velocity inlet with V = 5m/s. The tumbling parameter

in these simulations is considered to be λ = 1.05 to avoid instabilities in the solution but

unlike direct simulation of the Leslie-Ericksen equation, λ = 1 can also be used without

any divergence in the solution. The boundary condition for the directors at the inlet of

the channel has to reflect the actual physical condition for the inlet. In this simulation, it

is assumed that the flow entering the channel has a random orientation. As a result, at
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Initial Condition

Final Condition

Figure 3.8: Effect of translation of directors with bulk of fluid on structured mesh

Initial Condition

Final Condition

Figure 3.9: Effect of translation of directors with bulk of fluid on unstructured mesh
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(a)

(b)

Figure 3.10: Final simulation of orientation (combination of all three steps) for (a) struc-
tured mesh (b) unstructured mesh

the inlet boundary of the channel, the orientation of directors are randomly generated for

each time step. Figure 3.10 shows aligned directors along shear and random directors in

the middle of the channel.

The differences between the results shown for structured and unstructured meshes are

probably due to the fact that the calculation of averages in structured and unstructured

meshes are affecting the alignment of crystals. One other possibility for the discrepancy

might be due to the fact that the translation of directors between cells are affected by the

shape and arrangement of cells. Increasing the accuracy of the calculation of averages and

taking the effect of partial translation of fluid between cells can improve the results.

The following results show how changing each of the material or flow properties affect

the order parameter. As mentioned before, order parameter is an important characteristic of

the LCPs that quantifies the order in these polymers. The geometry of the flow is the same

as 3.10. Here the parameters that are changing are the inlet velocity, power-law constant,

and the temperature difference between the inlet and the walls.

Figure 3.11 shows how increasing the velocity at the inlet of the channel affects the

order parameter. As can be seen the order parameter increases after applying the effect of

evolution equation. This means that increasing the velocity increases the shear and turns

the directors to be aligned in the direction of the shear. The same effect can be seen when

the effects of all three components are combined. After velocity increases beyond 3 m/s, the

order parameter for the combination reduces although the order parameter still increases for

the evolution. This can be the result of the translation of directors with the bulk of fluid.
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Figure 3.11: Effect of increasing the inlet velocity on the order parameter

When a director is transferred inside the flow domain from the entrance, UDF replaces

it with a newly random generated director. These randomly generated directors can be

translated inside the flow domain and disturb the alignment of the crystals at higher speed.

Increasing the inlet velocity by itself does not affect the Franks elastic constants since the

mechanism for the Franks elastic energy is acting based of the orientational elasticity.

In Figure 3.12 the order parameter is calculated after changing the power-law index in

the viscosity equation (Eq. 2.1). The order parameter decreases from 0.1 to 0.3 and then

increases. The increase from 0.3 to 1 can be interpreted as the effect of bigger boundary

layer which makes more of the directors to be affected by the shear in the boundary later.

The decrease from 0.1 to 0.3 maybe due to the decrease in the effect of the translation of

director which let the boundary layer to affect the directors more.

To investigate the effect of temperature on the rheology and directionality, the simula-

tion is done with finite temperature difference between the inlet fluid and the walls. The

temperature difference between the inlet and the walls causes the viscosity of the polymer to

increase closer to the (cold) walls and increases the thickness of the boundary layer. Figure

3.13 shows how increasing the temperature difference causes a slight increase in the order

parameter. In this simulation, the inlet velocity is 1 m/s and the diffusivity of the polymer

is increased to make the effect of the temperature difference more observable. Temperature

difference will not have an effect of the Franks elastic constants in our method.
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Figure 3.12: Effect of the power-law index on the order parameter

Figure 3.13: Effect of the temperature difference between inlet and the walls on the order
parameter
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Figure 3.14: Change of order parameter vs. Re when average velocity V̄ is changing

It is possible to calculate the Reynolds number of the flow for power-law fluids as de-

scribed in Appendix B. In power-law fluids, Re depends on both the average velocity of the

flow and the power-law index. For the case of changing the velocity of the flow, the order

parameter is plotted against Re number. (Figure 3.14) The trend for the dependence of Re

is the same as the trend for velocity.
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Conclusion and Future Work

Numerical simulations and experimental measurements done in this thesis were mainly to

achieve a more practical method to model the directionality of liquid crystalline polymers

during their processing. For this purpose A method for simulating the directionality in finite

volume software ANSYS® FLUENT® based on the Monte-Carlo method is studied and

the result of a simple 2D case is presented. The effects of each component of directionality

modeling is studied and the physical interpretation of each of the components is discussed.

This method is developed to simulate the orientation of crystals in LCP materials where a

rough estimation of directionality is needed.

The main advantage of this method compared to the direct solution of the Leslie-Ericksen

equations is its stability for complex geometries. Geometries of the extrusion dies for pro-

cessing LCPs are complex and can not be meshed using structured meshes. Other advan-

tages of this method are (a) the ability to use experimental rheological results to simulate

the rheology, (b) ease of convergence (c) potential for 3D modeling in complex geometries

and (d) the potential to model the disclinations in LCPs. The major difficulty arises when

dealing with unstructured meshes. In this study, the translation of directors are dealt with

locally which makes it possible to solve for any shape and combination of meshes. This

method works best if the transition of the size of the cells happens very gradually and the

aspect ratio of the cells are almost one. For better accuracy of the high aspect ratio un-

structured meshed, a more robust averaging algorithm is needed. By comparing different

components of directionality modeling, it can be concluded that the effect of Frank elas-

tic energy on the flow is negligible compared to the effect of shear and the translation of

directors with the bulk of fluid.

The presented results show promising correlation to physical phenomena governing the

81
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rheology and orientation of LCPs in shear flows. These phenomenon are alignment of crys-

tals along the direction of shear and annihilation of defect structure in quiescent condition

due to Franks equation.

Some experimental measurements were also carried out to develop a better understand-

ing of the rheology of LCPs. Two capillary dies based on the oscillatory rheometry results

was designed for a liquid crystalline polymer material. The die swell of a LCP and an

amorphous polymer (polypropylene) was measured optically about 5mm after exiting the

die.

The measurements show that the diameter of the extrudate is almost the same as the

diameter of the die for the case of the LCP and no die swell or negative die swell exists. On

the other hand, the die swell of the polypropylene is significantly larger which is known to

be due to the existance of elasticity and normal stress differences. An attempt to model the

rheological properties of the LCP based on Phan Thien-Tanner (PTT) viscoelastic model

was made using ANSYS® POLYFLOW® in a 2D axi-symmetric geometry. PTT model is

one of the most realistic differential viscoelastic models that can capture the shear thinning

behavior of the LCP. It also exhibits non quadratic normal stress differences at high shear

rates. The material parameters of the PTT model and the curve fitting parameters in

ANSYS® POLYMAT® were changed to achieve the experimental results for the die swell.

The results show that although it is possible to get the desired results for the first

volume flow rate/shear rate, increasing the volume flow rate changes the rearrangement of

the velocity field at the lip of the die and causes excessive decrease in the diameter of the

extrudate. Based on these results it appears that the consideration of the directionality and

crystallization of LCP is important in successful modeling of their die swell.

To improve the overall modeling of the directionality it is important to improve the

rheological and directionality modeling at the same time. It is possible to perform more

experimental measurements for the extensional viscosity, second normal stress differences, ...

to be able to include more sophisticated fluid models in the rheological modeling. Extending

the directionality modeling to 3D is also very important since in reality disclinations appear

in curved lines. Improving the method of translation of directors for the case of unstructured

meshes will also improve the results.
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Appendix A

Introduction to UDFs

A user defined function (UDF) in ANSYS® FLUENT® is a piece of C code that can be

compiled with the ANSYS® FLUENT® solver to add customized features and capabilities

to the ANSYS® FLUENT® solver. Using the UDF is it possible to define custom

boundary conditions, material properties, initial condition and so on.

Since these code are written in C programming language, it is possible to utilize all

the powerful capabilities of the C programming and memory management. UDFs can be

written in any text editor and then saved with .c extension. This C file can contain several

different functions and UDFs. Using the UDFs, it is possible to reach the variables inside

the solver data and manipulate this data for each iteration or time step.

In summary, UDFs:

� are written in C programming language (ANSYS® FLUENT® is also written in C

Programming language.)

� must include udf.h in their header

� are defined using the DEFINE macro which is supplied by ANSYS® FLUENT®

� utilize predefined macros and functions to access the solver data and define functions

to be assigned to different properties

� can be executed along with the solver when compiled

� are accessible in the graphical user interface of the ANSYS® FLUENT® to be

assigned to properties

� like other C functions, return their value with return function (in SI unit)
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Appendix B

Non-dimensional numbers

1. Reynolds number (Re)

� The ratio of the fluid inertia to viscous forces

� Newtonian fluid Re = (ρV D)/µ

� Power-law fluid [43]

Repl = 23−n
(

n

3n+ 1

)n V̄ 2−nDnρ

K

2. Nusselt number (Nu)

� The ratio of convective to conductive heat transfer across (normal to) the bound-

ary

� Nu = h.L/kf

� Selection of the characteristic length, L, should be in the direction of growth (or

thickness) of the boundary layer. Some examples of characteristic length are:

the outer diameter of a cylinder in (external) cross flow (perpendicular to the

cylinder axis), the length of a vertical plate undergoing natural convection, or

the diameter of a sphere. For complex shapes, the length may be defined as the

volume of the fluid body divided by the surface area. The thermal conductivity of

the fluid is typically (but not always) evaluated at the film temperature, which

for engineering purposes may be calculated as the mean-average of the bulk

fluid temperature and wall surface temperature. For relations defined as a local

Nusselt number, one should take the characteristic length to be the distance from

the surface boundary to the local point of interest. However, to obtain an average
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Nusselt number, one must integrate said relation over the entire characteristic

length. Typically, for free convection, the average Nusselt number is expressed

as a function of the Rayleigh number and the Prandtl number, written as: Nu =

f(Ra, Pr). Else, for forced convection, the Nusselt number is generally a function

of the Reynolds number and the Prandtl number, or Nu = f(Re, Pr). Empirical

correlations for a wide variety of geometries are available that express the Nusselt

number in the aforementioned forms.

3. Prandtl number (Pr)

� The ratio of momentum diffusivity (kinematic viscosity) to thermal diffusivity

� Pr = ν/α = cpµ/k

4. Weissenberg number (Wi)

� Shear rate times relaxation time

� Wi = γ̇.λ

� The Weissenberg number (Wi) is a dimensionless number used in the study of

viscoelastic flows. It is named after Karl Weissenberg. The dimensionless number

is the ratio of the relaxation time of the fluid and a specific process time. For

instance, in simple steady shear, the Weissenberg number, often abbreviated

as Wi or We, is defined as the shear rate times the relaxation time. Since

this number is obtained from scaling the evolution of the stress, it contains

choices for the shear or elongation rate, and the length-scale. Therefore the

exact definition of all non dimensional numbers should be given as well as the

number itself. While Wi is similar to the Deborah number and is often confused

with it in technical literature, they have different physical interpretations. The

Weissenberg number indicates the degree of anisotropy or orientation generated

by the deformation, and is appropriate to describe flows with a constant stretch

history, such as simple shear. In contrast, the Deborah number should be used

to describe flows with a non-constant stretch history, and physically represents

the rate at which elastic energy is stored or released.

5. Deborah number (De)

� The ratio of the stress relaxation time to the time scale of the observation

� De = tc/tp
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� The Deborah number (De) is a dimensionless number, often used in rheology to

characterize the fluidity of materials under specific flow conditions. It is based

on the premise that given enough time even the solid-like material will flow.

The flow characteristics is not an inherent property of the material alone, but

a relative property that depends on two fundamentally different characteristic

times. Formally, the Deborah number is defined as the ratio of the relaxation

time characterizing the time it takes for a material to adjust to applied stresses

or deformations, and the characteristic time scale of an experiment (or a com-

puter simulation) probing the response of the material. It incorporates both the

elasticity and viscosity of the material. At lower Deborah numbers, the material

behaves in a more fluidlike manner, with an associated Newtonian viscous flow.

At higher Deborah numbers, the material behavior changes to a non-Newtonian

regime, increasingly dominated by elasticity, demonstrating solidlike behavior.



Appendix C

Polymat’s material data for LCP

(MAZ078MMR2.0)

viscoelastic isothermal model

INITIAL DATA

nb. of modes = 1

mode # 1 - Phan Thien-Tanner model

T = T1 + T2

exp(eps*trelax/visc1*tr(T1))*T1 + trelax*((1-xi/2)*T1up + xi/2*T1low)

= 2*visc1*D

T2 = 2*visc2*D

where - visc is the viscosity

- visc1 = (1-ratio)*visc

- visc2 = ratio*visc

- trelax is the relaxation time

- T1up is the upper-convected time derivative of T1

- T1low is the lower-convected time derivative of T1

visc = 0.4085412E+04 [auto]
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trelax = 0.3162278E-02 [auto]

eps = 0.8602864E-02 [auto]

xi = 0.8534575E+00 [auto]

ratio = 0.1711546E-02 [auto]

EXPERIMENTAL CURVES

nb. of experimental curves : 3

curve #0 : name = Inputs\Shear.crv

- temperature .... : 3.000000e+002

- nb. of points .. : 16

shear rate, steady shear viscosity

5.5000000e+000 1.1383000e+003

5.5000000e+000 1.1190000e+003

1.1270000e+001 5.6470000e+002

1.2090000e+001 5.3490000e+002

1.0970000e+002 1.9820000e+002

1.0970000e+002 2.0790000e+002

4.9291000e+002 1.0260000e+002

4.9566000e+002 1.0060000e+002

9.8942000e+002 7.1100000e+001

9.9052000e+002 7.0800000e+001

5.0028800e+003 2.8500000e+001

5.0031500e+003 2.8400000e+001

7.5037900e+003 2.1900000e+001

7.5046200e+003 2.2300000e+001

1.0004680e+004 1.8500000e+001

1.0005510e+004 1.8400000e+001

curve #1 : name = Inputs\GPrime.crv

- temperature .... : 3.000000e+002

- nb. of points .. : 31
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frequence, storage modulus G’

1.0000000e-001 3.7305000e+002

1.2590000e-001 3.9810000e+002

1.5850000e-001 4.9790000e+002

1.9950000e-001 5.1435000e+002

2.5120000e-001 5.6640000e+002

3.1620000e-001 6.0675000e+002

3.9810000e-001 6.7675000e+002

5.0120000e-001 7.3665000e+002

6.3100000e-001 7.7960000e+002

7.9430000e-001 8.5195000e+002

1.0000000e+000 8.9855000e+002

1.2590000e+000 9.4360000e+002

1.5850000e+000 1.0415500e+003

1.9950000e+000 1.1380000e+003

2.5120000e+000 1.2425000e+003

3.1620000e+000 1.3445000e+003

3.9810000e+000 1.4700000e+003

5.0120000e+000 1.6300000e+003

6.3100000e+000 1.7815000e+003

7.9430000e+000 1.9520000e+003

1.0000000e+001 2.1730000e+003

1.2590000e+001 2.4290000e+003

1.5850000e+001 2.6960000e+003

1.9950000e+001 3.0180000e+003

2.5120000e+001 3.3840000e+003

3.1620000e+001 3.8340000e+003

3.9810000e+001 4.3515000e+003

5.0120000e+001 4.9425000e+003

6.3100000e+001 5.6150000e+003

7.9430000e+001 6.3865000e+003

1.0000000e+002 7.3205000e+003

curve #2 : name = Inputs\GDoublePrime.crv

- temperature .... : 3.000000e+002
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- nb. of points .. : 31

frequence, loss modulus G’’

1.0000000e-001 2.1560000e+002

1.2590000e-001 2.3565000e+002

1.5850000e-001 2.7930000e+002

1.9950000e-001 3.4895000e+002

2.5120000e-001 3.9910000e+002

3.1620000e-001 4.1590000e+002

3.9810000e-001 4.6250000e+002

5.0120000e-001 5.2695000e+002

6.3100000e-001 5.2635000e+002

7.9430000e-001 5.5975000e+002

1.0000000e+000 6.6210000e+002

1.2590000e+000 7.2975000e+002

1.5850000e+000 8.1160000e+002

1.9950000e+000 9.3370000e+002

2.5120000e+000 1.0349000e+003

3.1620000e+000 1.1675000e+003

3.9810000e+000 1.3350000e+003

5.0120000e+000 1.5245000e+003

6.3100000e+000 1.7410000e+003

7.9430000e+000 1.9935000e+003

1.0000000e+001 2.2745000e+003

1.2590000e+001 2.6180000e+003

1.5850000e+001 2.9950000e+003

1.9950000e+001 3.4430000e+003

2.5120000e+001 3.9360000e+003

3.1620000e+001 4.5010000e+003

3.9810000e+001 5.1430000e+003

5.0120000e+001 5.9000000e+003

6.3100000e+001 6.7490000e+003

7.9430000e+001 7.6650000e+003

1.0000000e+002 8.7575000e+003
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FITTING

max. nb. of iterations = 50

Step 0 : Evaluation of the relaxation times

mode 1 : relaxation time = 3.1622777e-003

Step 1 : Evaluation of the partial viscosities

Distance between Distance between solution

two successive solutions, and experimental points

1.8987342e+000 2.2836354e+001

0.0000000e+000 2.2836354e+001

Number of iterations : 2

-> Optimisation terminated

mode 1 : partial viscosity = 4.3944597e+003

Step 2 : Evaluation of other parameters

Distance between Distance between solution

two successive solutions, and experimental points

1.8183540e+000 4.4476405e+001

1.6536446e+000 4.3733101e+001

6.8400870e-001 4.3664110e+001

Number of iterations : 3

-> Optimisation terminated
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RESULTS

nb. of modes = 1

mode # 1 - Phan Thien-Tanner model

T = T1 + T2

exp(eps*trelax/visc1*tr(T1))*T1 + trelax*((1-xi/2)*T1up + xi/2*T1low)

= 2*visc1*D

T2 = 2*visc2*D

where - visc is the viscosity

- visc1 = (1-ratio)*visc

- visc2 = ratio*visc

- trelax is the relaxation time

- T1up is the upper-convected time derivative of T1

- T1low is the lower-convected time derivative of T1

visc = 0.4085412E+04 [auto]

trelax = 0.3162278E-02 [auto]

eps = 0.8602864E-02 [auto]

xi = 0.8534575E+00 [auto]

ratio = 0.1711546E-02 [auto]

ELAPSED time : 0 s

CPU time ... : 0 s



Appendix D

UDF code for simulating the

directionality

#inc lude ” s t d i o . h”

#inc lude ” s t d l i b . h”

#inc lude ” udf . h”

#inc lude ”math . h”

#inc lude ”mem. h”

#inc lude ” sg . h”

DEFINE ON DEMAND( o r i e n t a t i o n )

{
Domain *domain=Get Domain (1 ) ;

Thread * t ;

c e l l t c ;

i n t i ;

t h r e a d l o o p c ( t , domain ) /*This part s e t s a l l the UDMs to zero */

{
b e g i n c l o o p ( c , t )

{
#i f RP 2D

C UDMI( c , t , 0 ) =0.0 ;

C UDMI( c , t , 1 ) =0.0 ;

C UDMI( c , t , 2 ) =0.0 ;
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C UDMI( c , t , 3 ) =0.0 ;

C UDMI( c , t , 4 ) =0.0 ;

C UDMI( c , t , 5 ) =0.0 ;

#e n d i f

#i f RP 3D

C UDMI( c , t , 0 ) =0.0 ;

C UDMI( c , t , 1 ) =0.0 ;

C UDMI( c , t , 2 ) =0.0 ;

C UDMI( c , t , 3 ) =0.0 ;

C UDMI( c , t , 4 ) =0.0 ;

C UDMI( c , t , 5 ) =0.0 ;

C UDMI( c , t , 6 ) =0.0 ;

C UDMI( c , t , 7 ) =0.0 ;

C UDMI( c , t , 8 ) =0.0 ;

#e n d i f

}
end c loop ( c , t )

}

Random( ) ; /*This func t i on gene ra t e s a random d i s t r i b u t i o n o f

d i r e c t o r s */

// I n i t i a l c o n d i t i o n ( ) ;

f o r ( i =0; i <20; i++) /*Ca lcu la t ing the evo lu t i on order parameter */

{
// Message (” I t t e r a t i o n : %i i s done .\n” , i ) ;

t h r e a d l o o p c ( t , domain ) /*This part s e t s a l l the UDMs f o r

c a l c u l a t i o n to zero */

{
b e g i n c l o o p ( c , t )

{
#i f RP 2D



99

C UDMI( c , t , 3 ) =0.0 ;

C UDMI( c , t , 4 ) =0.0 ;

C UDMI( c , t , 5 ) =0.0 ;

#e n d i f

#i f RP 3D

C UDMI( c , t , 5 ) =0.0 ;

C UDMI( c , t , 6 ) =0.0 ;

C UDMI( c , t , 7 ) =0.0 ;

C UDMI( c , t , 8 ) =0.0 ;

#e n d i f

}
end c loop ( c , t )

}

Evolut ion ( ) ; /* This func t i on applys the e f f e c t o f evo lu t i on

equat ion to the d i r e c t o r s

and saves the r e s u l t in the f o l l o w i n g UDMs*/

// Message (” Evolut ion Equation : %i i s done .\n” , i ) ;

t h r e a d l o o p c ( t , domain ) /*This part a s s i g n s the c a l c u l a t e d

d i r e c t o r s in the Evolut ion ( )

subrout ine to the user de f ined memories f o r the n x , n y and in

case o f 3D n z */

{
b e g i n c l o o p ( c , t )

{
#i f RP 2D

C UDMI( c , t , 1 )+=C UDMI( c , t , 3 ) ;

C UDMI( c , t , 2 )+=C UDMI( c , t , 4 ) ;

i f ( (C UDMI( c , t , 1 )>0) && (C UDMI( c , t , 2 )<0) )

{
C UDMI( c , t , 1 ) *=−1.0;

C UDMI( c , t , 2 ) *=−1.0;

}
i f ( (C UDMI( c , t , 1 )<0) && (C UDMI( c , t , 2 )<0) )
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{
C UDMI( c , t , 1 ) *=−1.0;

C UDMI( c , t , 2 ) *=−1.0;

}

C UDMI( c , t , 1 )=C UDMI( c , t , 1 ) / s q r t (pow(C UDMI( c , t , 1 ) , 2 )+pow(

C UDMI( c , t , 2 ) , 2 ) ) ;

C UDMI( c , t , 2 )=C UDMI( c , t , 2 ) / s q r t (pow(C UDMI( c , t , 1 ) , 2 )+pow(

C UDMI( c , t , 2 ) , 2 ) ) ;

#e n d i f

#i f RP 3D

C UDMI( c , t , 2 )+=C UDMI( c , t , 5 ) ;

C UDMI( c , t , 3 )+=C UDMI( c , t , 6 ) ;

C UDMI( c , t , 4 )+=C UDMI( c , t , 7 ) ;

/*This part applys the f a c t that d i r e c t o r s have sence but not

d i r e c t i o n */

i f ( (C UDMI( c , t , 2 )>0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )>0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )>0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )<0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )<0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )>0)

)

{
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C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )<0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )<0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}

C UDMI( c , t , 2 )=C UDMI( c , t , 2 ) / s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(

C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ;

C UDMI( c , t , 3 )=C UDMI( c , t , 3 ) / s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(

C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ;

C UDMI( c , t , 4 )=C UDMI( c , t , 4 ) / s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(

C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ;

#e n d i f

}
end c loop ( c , t )

}
}
OrderParameter ( ) ;

t h r e a d l o o p c ( t , domain ) /*This part s e t s a l l the UDMs to zero */

{
b e g i n c l o o p ( c , t )

{
#i f RP 2D

C UDMI( c , t , 0 ) =0.0 ;

C UDMI( c , t , 1 ) =0.0 ;

C UDMI( c , t , 2 ) =0.0 ;

C UDMI( c , t , 3 ) =0.0 ;
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C UDMI( c , t , 4 ) =0.0 ;

C UDMI( c , t , 5 ) =0.0 ;

#e n d i f

#i f RP 3D

C UDMI( c , t , 0 ) =0.0 ;

C UDMI( c , t , 1 ) =0.0 ;

C UDMI( c , t , 2 ) =0.0 ;

C UDMI( c , t , 3 ) =0.0 ;

C UDMI( c , t , 4 ) =0.0 ;

C UDMI( c , t , 5 ) =0.0 ;

C UDMI( c , t , 6 ) =0.0 ;

C UDMI( c , t , 7 ) =0.0 ;

C UDMI( c , t , 8 ) =0.0 ;

#e n d i f

}
end c loop ( c , t )

}

Random( ) ; /*This func t i on gene ra t e s a random d i s t r i b u t i o n o f

d i r e c t o r s */

f o r ( i =0; i <20; i++) /*This part c a l c u l a t e s the Franks order

parameter */

{
// Message (” I t t e r a t i o n : %i i s done .\n” , i ) ;

t h r e a d l o o p c ( t , domain ) /*This part s e t s a l l the UDMs f o r

c a l c u l a t i o n to zero */

{
b e g i n c l o o p ( c , t )

{
#i f RP 2D

C UDMI( c , t , 3 ) =0.0 ;

C UDMI( c , t , 4 ) =0.0 ;
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C UDMI( c , t , 5 ) =0.0 ;

#e n d i f

#i f RP 3D

C UDMI( c , t , 5 ) =0.0 ;

C UDMI( c , t , 6 ) =0.0 ;

C UDMI( c , t , 7 ) =0.0 ;

C UDMI( c , t , 8 ) =0.0 ;

#e n d i f

}
end c loop ( c , t )

}

Frank ( ) ; /* This func t i on c a l c u l a t e s the e f f e c t o f Franks

e l a s t i c equat ion on the

d i r e c t o r s and saves the r e s u l t s in the f o l l o w i n g UDMs. */

// Message (” Franks Equation : %i i s done .\n” , i ) ;

t h r e a d l o o p c ( t , domain )

{
b e g i n c l o o p ( c , t )

{
#i f RP 2D

C UDMI( c , t , 1 )+=C UDMI( c , t , 3 ) ;

C UDMI( c , t , 2 )+=C UDMI( c , t , 4 ) ;

i f ( (C UDMI( c , t , 1 )>0) && (C UDMI( c , t , 2 )<0) )

{
C UDMI( c , t , 1 ) *=−1.0;

C UDMI( c , t , 2 ) *=−1.0;

}
i f ( (C UDMI( c , t , 1 )<0) && (C UDMI( c , t , 2 )<0) )

{
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C UDMI( c , t , 1 ) *=−1.0;

C UDMI( c , t , 2 ) *=−1.0;

}

C UDMI( c , t , 1 )=C UDMI( c , t , 1 ) / s q r t (pow(C UDMI( c , t , 1 ) , 2 )+pow(

C UDMI( c , t , 2 ) , 2 ) ) ;

C UDMI( c , t , 2 )=C UDMI( c , t , 2 ) / s q r t (pow(C UDMI( c , t , 1 ) , 2 )+pow(

C UDMI( c , t , 2 ) , 2 ) ) ;

#e n d i f

#i f RP 3D

C UDMI( c , t , 2 )+=C UDMI( c , t , 5 ) ;

C UDMI( c , t , 3 )+=C UDMI( c , t , 6 ) ;

C UDMI( c , t , 4 )+=C UDMI( c , t , 7 ) ;

i f ( (C UDMI( c , t , 2 )>0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )>0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )>0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )<0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )<0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )>0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;
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C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )<0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )<0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}

C UDMI( c , t , 2 )=C UDMI( c , t , 2 ) / s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(

C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ;

C UDMI( c , t , 3 )=C UDMI( c , t , 3 ) / s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(

C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ;

C UDMI( c , t , 4 )=C UDMI( c , t , 4 ) / s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(

C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ;

#e n d i f

}
end c loop ( c , t )

}

}
OrderParameter ( ) ;

t h r e a d l o o p c ( t , domain ) /*This part s e t s a l l the UDMs to zero */

{
b e g i n c l o o p ( c , t )

{
#i f RP 2D

C UDMI( c , t , 0 ) =0.0 ;

C UDMI( c , t , 1 ) =0.0 ;

C UDMI( c , t , 2 ) =0.0 ;

C UDMI( c , t , 3 ) =0.0 ;

C UDMI( c , t , 4 ) =0.0 ;
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C UDMI( c , t , 5 ) =0.0 ;

#e n d i f

#i f RP 3D

C UDMI( c , t , 0 ) =0.0 ;

C UDMI( c , t , 1 ) =0.0 ;

C UDMI( c , t , 2 ) =0.0 ;

C UDMI( c , t , 3 ) =0.0 ;

C UDMI( c , t , 4 ) =0.0 ;

C UDMI( c , t , 5 ) =0.0 ;

C UDMI( c , t , 6 ) =0.0 ;

C UDMI( c , t , 7 ) =0.0 ;

C UDMI( c , t , 8 ) =0.0 ;

#e n d i f

}
end c loop ( c , t )

}

Random( ) ; /*This func t i on gene ra t e s a random d i s t r i b u t i o n o f

d i r e c t o r s */

f o r ( i =0; i <20; i++) /*This part c a l c u l a t e s the order parameter

f o r the combination o f a l l th ree e f f e c t s */

{
// Message (” I t t e r a t i o n : %i i s done .\n” , i ) ;

t h r e a d l o o p c ( t , domain ) /*This part s e t s a l l the UDMs f o r

c a l c u l a t i o n to zero */

{
b e g i n c l o o p ( c , t )

{
#i f RP 2D

C UDMI( c , t , 3 ) =0.0 ;

C UDMI( c , t , 4 ) =0.0 ;

C UDMI( c , t , 5 ) =0.0 ;
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#e n d i f

#i f RP 3D

C UDMI( c , t , 5 ) =0.0 ;

C UDMI( c , t , 6 ) =0.0 ;

C UDMI( c , t , 7 ) =0.0 ;

C UDMI( c , t , 8 ) =0.0 ;

#e n d i f

}
end c loop ( c , t )

}

Evolut ion ( ) ; /* This func t i on applys the e f f e c t o f evo lu t i on

equat ion to the d i r e c t o r s

and saves the r e s u l t in the f o l l o w i n g UDMs*/

// Message (” Evolut ion Equation : %i i s done .\n” , i ) ;

t h r e a d l o o p c ( t , domain ) /*This part a s s i g n s the c a l c u l a t e d

d i r e c t o r s in the Evolut ion ( )

subrout ine to the user de f ined memories f o r the n x , n y and in

case o f 3D n z */

{
b e g i n c l o o p ( c , t )

{
#i f RP 2D

C UDMI( c , t , 1 )+=C UDMI( c , t , 3 ) ;

C UDMI( c , t , 2 )+=C UDMI( c , t , 4 ) ;

i f ( (C UDMI( c , t , 1 )>0) && (C UDMI( c , t , 2 )<0) )

{
C UDMI( c , t , 1 ) *=−1.0;

C UDMI( c , t , 2 ) *=−1.0;

}
i f ( (C UDMI( c , t , 1 )<0) && (C UDMI( c , t , 2 )<0) )

{
C UDMI( c , t , 1 ) *=−1.0;

C UDMI( c , t , 2 ) *=−1.0;
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}

C UDMI( c , t , 1 )=C UDMI( c , t , 1 ) / s q r t (pow(C UDMI( c , t , 1 ) , 2 )+pow(

C UDMI( c , t , 2 ) , 2 ) ) ;

C UDMI( c , t , 2 )=C UDMI( c , t , 2 ) / s q r t (pow(C UDMI( c , t , 1 ) , 2 )+pow(

C UDMI( c , t , 2 ) , 2 ) ) ;

#e n d i f

#i f RP 3D

C UDMI( c , t , 2 )+=C UDMI( c , t , 5 ) ;

C UDMI( c , t , 3 )+=C UDMI( c , t , 6 ) ;

C UDMI( c , t , 4 )+=C UDMI( c , t , 7 ) ;

/*This part applys the f a c t that d i r e c t o r s have sence but not

d i r e c t i o n */

i f ( (C UDMI( c , t , 2 )>0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )>0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )>0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )<0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )<0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )>0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;
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}
i f ( (C UDMI( c , t , 2 )<0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )<0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}

C UDMI( c , t , 2 )=C UDMI( c , t , 2 ) / s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(

C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ;

C UDMI( c , t , 3 )=C UDMI( c , t , 3 ) / s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(

C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ;

C UDMI( c , t , 4 )=C UDMI( c , t , 4 ) / s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(

C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ;

#e n d i f

}
end c loop ( c , t )

}

t h r e a d l o o p c ( t , domain ) /*This part s e t s a l l the UDMs f o r

c a l c u l a t i o n to zero */

{
b e g i n c l o o p ( c , t )

{
#i f RP 2D

C UDMI( c , t , 3 ) =0.0 ;

C UDMI( c , t , 4 ) =0.0 ;

C UDMI( c , t , 5 ) =0.0 ;

#e n d i f

#i f RP 3D

C UDMI( c , t , 5 ) =0.0 ;

C UDMI( c , t , 6 ) =0.0 ;
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C UDMI( c , t , 7 ) =0.0 ;

C UDMI( c , t , 8 ) =0.0 ;

#e n d i f

}
end c loop ( c , t )

}

Frank ( ) ; /* This func t i on c a l c u l a t e s the e f f e c t o f Franks

e l a s t i c equat ion on the

d i r e c t o r s and saves the r e s u l t s in the f o l l o w i n g UDMs. */

// Message (” Franks Equation : %i i s done .\n” , i ) ;

t h r e a d l o o p c ( t , domain )

{
b e g i n c l o o p ( c , t )

{
#i f RP 2D

C UDMI( c , t , 1 )+=C UDMI( c , t , 3 ) ;

C UDMI( c , t , 2 )+=C UDMI( c , t , 4 ) ;

i f ( (C UDMI( c , t , 1 )>0) && (C UDMI( c , t , 2 )<0) )

{
C UDMI( c , t , 1 ) *=−1.0;

C UDMI( c , t , 2 ) *=−1.0;

}
i f ( (C UDMI( c , t , 1 )<0) && (C UDMI( c , t , 2 )<0) )

{
C UDMI( c , t , 1 ) *=−1.0;

C UDMI( c , t , 2 ) *=−1.0;

}

C UDMI( c , t , 1 )=C UDMI( c , t , 1 ) / s q r t (pow(C UDMI( c , t , 1 ) , 2 )+pow(

C UDMI( c , t , 2 ) , 2 ) ) ;
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C UDMI( c , t , 2 )=C UDMI( c , t , 2 ) / s q r t (pow(C UDMI( c , t , 1 ) , 2 )+pow(

C UDMI( c , t , 2 ) , 2 ) ) ;

#e n d i f

#i f RP 3D

C UDMI( c , t , 2 )+=C UDMI( c , t , 5 ) ;

C UDMI( c , t , 3 )+=C UDMI( c , t , 6 ) ;

C UDMI( c , t , 4 )+=C UDMI( c , t , 7 ) ;

i f ( (C UDMI( c , t , 2 )>0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )>0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )>0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )<0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )<0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )>0)

)

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )<0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )<0)

)

{
C UDMI( c , t , 2 ) *=−1.0;
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C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}

C UDMI( c , t , 2 )=C UDMI( c , t , 2 ) / s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(

C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ;

C UDMI( c , t , 3 )=C UDMI( c , t , 3 ) / s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(

C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ;

C UDMI( c , t , 4 )=C UDMI( c , t , 4 ) / s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(

C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ;

#e n d i f

}
end c loop ( c , t )

}

Trans la t i on ( ) ;

t h r e a d l o o p c ( t , domain )

{
b e g i n c l o o p ( c , t )

{

#i f RP 2D

i f (C UDMI( c , t , 5 )>0)

{
// C UDMI( c , t , 1 )+=C UDMI( c , t , 3 ) ;

// C UDMI( c , t , 2 )+=C UDMI( c , t , 4 ) ;

C UDMI( c , t , 1 )=C UDMI( c , t , 3 ) / s q r t (pow(C UDMI( c , t , 3 ) , 2 )+pow(

C UDMI( c , t , 4 ) , 2 ) ) ;

C UDMI( c , t , 2 )=C UDMI( c , t , 4 ) / s q r t (pow(C UDMI( c , t , 3 ) , 2 )+pow(

C UDMI( c , t , 4 ) , 2 ) ) ;

i f ( (C UDMI( c , t , 1 )>0) && (C UDMI( c , t , 2 )<0) )

{
C UDMI( c , t , 1 ) *=−1.0;

C UDMI( c , t , 2 ) *=−1.0;
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}
i f ( (C UDMI( c , t , 1 )<0) && (C UDMI( c , t , 2 )<0) )

{
C UDMI( c , t , 1 ) *=−1.0;

C UDMI( c , t , 2 ) *=−1.0;

}
}
e l s e i f (C UDMI( c , t , 5 ) ==0)

{/*This happens on the boundar ies o f the f low domain*/

C UDMI( c , t , 0 ) =(rand ( ) %31416) /10000 . 0 ;

C UDMI( c , t , 1 )=cos (C UDMI( c , t , 0 ) ) ; /* x component o f the

d i r e c t o r */

C UDMI( c , t , 2 )=s i n (C UDMI( c , t , 0 ) ) ; /* y component o f the

d i r e c t o r */

}
#e n d i f

#i f RP 3D

i f (C UDMI( c , t , 8 )>0)

{
// C UDMI( c , t , 2 )+=C UDMI( c , t , 5 ) ;

// C UDMI( c , t , 3 )+=C UDMI( c , t , 6 ) ;

// C UDMI( c , t , 4 )+=C UDMI( c , t , 7 ) ;

C UDMI( c , t , 2 )=C UDMI( c , t , 5 ) / s q r t (pow(C UDMI( c , t , 5 ) , 2 )+pow(

C UDMI( c , t , 6 ) , 2 )+pow(C UDMI( c , t , 7 ) , 2 ) ) ;

C UDMI( c , t , 3 )=C UDMI( c , t , 6 ) / s q r t (pow(C UDMI( c , t , 5 ) , 2 )+pow(

C UDMI( c , t , 6 ) , 2 )+pow(C UDMI( c , t , 7 ) , 2 ) ) ;

C UDMI( c , t , 4 )=C UDMI( c , t , 7 ) / s q r t (pow(C UDMI( c , t , 5 ) , 2 )+pow(

C UDMI( c , t , 6 ) , 2 )+pow(C UDMI( c , t , 7 ) , 2 ) ) ;

i f ( (C UDMI( c , t , 2 )>0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )

>0) )

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;
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C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )>0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )

<0) )

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )<0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )

>0) )

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
i f ( (C UDMI( c , t , 2 )<0) && (C UDMI( c , t , 3 )<0) && (C UDMI( c , t , 4 )

<0) )

{
C UDMI( c , t , 2 ) *=−1.0;

C UDMI( c , t , 3 ) *=−1.0;

C UDMI( c , t , 4 ) *=−1.0;

}
}
e l s e i f (C UDMI( c , t , 8 ) ==0)

{
C UDMI( c , t , 0 ) =(rand ( ) %31416) /10000 . 0 ;

C UDMI( c , t , 1 ) =(rand ( ) %31416) /10000 . 0 ;

C UDMI( c , t , 2 )=s i n (C UDMI( c , t , 1 ) ) * cos (C UDMI( c , t , 0 ) ) ; /* x

component o f the d i r e c t o r */

C UDMI( c , t , 3 )=s i n (C UDMI( c , t , 1 ) ) * s i n (C UDMI( c , t , 0 ) ) ; /* y

component o f the d i r e c t o r */

C UDMI( c , t , 4 )=cos (C UDMI( c , t , 1 ) ) ; /* z component o f the

d i r e c t o r */

}
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#e n d i f

}
end c loop ( c , t )

}
}
OrderParameter ( ) ;

Message (”Done .\n”) ;

}

void Random( )

{
Domain *domain=Get Domain (1 ) ;

Thread * t ;

c e l l t c ;

t h r e a d l o o p c ( t , domain )

{
b e g i n c l o o p ( c , t )

{
C UDMI( c , t , 0 ) =(rand ( ) %31416) /10000 . 0 ;

#i f RP 2D

Set User Memory Name (0 ,” a n g l e f r o m x a x i s ”) ;

Set User Memory Name (1 ,” d i r ec to r s x component ”) ;

Set User Memory Name (2 ,” d i r ec to r s y component ”) ;

C UDMI( c , t , 1 )=cos (C UDMI( c , t , 0 ) ) ; /* x component o f the d i r e c t o r

*/

C UDMI( c , t , 2 )=s i n (C UDMI( c , t , 0 ) ) ; /* y component o f the d i r e c t o r

*/

#e n d i f

#i f RP 3D

C UDMI( c , t , 1 ) =(rand ( ) %31416) /10000 . 0 ;
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Set User Memory Name (0 ,” a n g l e f r o m x a x i s ”) ;

Set User Memory Name (1 ,” a n g l e f r o m y a x i s ”) ;

Set User Memory Name (2 ,” d i r ec to r s x component ”) ;

Set User Memory Name (3 ,” d i r ec to r s y component ”) ;

Set User Memory Name (4 ,” d i r e c to r s z component ”) ;

C UDMI( c , t , 2 )=s i n (C UDMI( c , t , 1 ) ) * cos (C UDMI( c , t , 0 ) ) ; /* x

component o f the d i r e c t o r */

C UDMI( c , t , 3 )=s i n (C UDMI( c , t , 1 ) ) * s i n (C UDMI( c , t , 0 ) ) ; /* y

component o f the d i r e c t o r */

C UDMI( c , t , 4 )=cos (C UDMI( c , t , 1 ) ) ; /* z component o f the d i r e c t o r

*/

#e n d i f

}
end c loop ( c , t )

}
}

void Evolut ion ( )

{
/* the func t i on ( Evolut ion ) w i l l apply the e f f e c t o f r a t e o f

r o t a t i o n and ra t e

o f deformation t e n s o r s to the d i r e c t o r o f each c e l l in the

domain . This func t i on

used the d e t e r m i n i s t i c approach to apply the change in d i r e c t o r

S ince t h i s f unc t i on uses the d e r i v a t i v e s o f the f u n c t i o n s from

FLUENT, these

d e r i v a t i v e s should be s to r ed and a v a i l a b l e to the func t i on at

the time o f the

s imu la t i on . */

Domain *domain=Get Domain (1 ) ;

Thread * t ;

c e l l t c ;

f a c e t f ;
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double De l tat =1.e−4,Lambda=1.05 ,nx , ny , nz ,AA1,AA2,AA3, max=−10.0 ,

min=−10.0;

double A[ND ND ] [ ND ND] ,W[ND ND ] [ ND ND] , DeltaNW [ND ND] , DeltaNA [

ND ND ] ;

i n t i ;

t h r e a d l o o p c ( t , domain )

{
b e g i n c l o o p ( c , t )

{
A[0 ] [ 0 ] =( −1 . 0 ) *C DUDX( c , t ) ;

A[ 0 ] [ 1 ] = 0 . 5 * (C DUDY( c , t )+C DVDX( c , t ) ) ;

A[ 1 ] [ 0 ] =A [ 0 ] [ 1 ] ;

A[ 1 ] [ 1 ] =( −1 . 0 ) *C DVDY( c , t ) ;

W[ 0 ] [ 0 ] = 0 . 0 ;

W[ 0 ] [ 1 ] = 0 . 5 * (C DUDY( c , t )−C DVDX( c , t ) ) ;

W[1 ] [ 0 ] =( −1 . 0 ) *W[ 0 ] [ 1 ] ; /*0 .5* (C DVDX( c , t )−C DUDY( c , t ) ) ;*/

W[ 1 ] [ 1 ] = 0 . 0 ;

#i f RP 2D

nx=C UDMI( c , t , 1 ) ;

ny=C UDMI( c , t , 2 ) ;

#e n d i f

#i f RP 3D

A[ 0 ] [ 2 ] = 0 . 5 * (C DUDZ( c , t )+CDWDX( c , t ) ) ;

A[ 1 ] [ 2 ] = 0 . 5 * (C DVDZ( c , t )+CDWDY( c , t ) ) ;

A[ 2 ] [ 2 ] =C DWDZ( c , t ) ;

A[ 2 ] [ 1 ] =A [ 1 ] [ 2 ] ;

A[ 2 ] [ 0 ] =A [ 0 ] [ 2 ] ;

W[ 0 ] [ 2 ] = 0 . 5 * (C DUDZ( c , t )−CDWDX( c , t ) ) ;

W[ 1 ] [ 2 ] = 0 . 5 * (C DVDZ( c , t )−CDWDY( c , t ) ) ;

W[ 2 ] [ 2 ] = 0 . 0 ;

W[2 ] [ 1 ] =( −1 . 0 ) *W[ 1 ] [ 2 ] ; /*0 .5* (CDWDY( c , t )−C DVDZ( c , t ) ) ;*/

W[2 ] [ 0 ] =( −1 . 0 ) *W[ 0 ] [ 2 ] ; /*0 .5* (CDWDX( c , t )−C DUDZ( c , t ) ) ;*/

nx=C UDMI( c , t , 2 ) ;

ny=C UDMI( c , t , 3 ) ;
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nz=C UDMI( c , t , 4 ) ;

#e n d i f

DeltaNW[0]= Deltat *( nx*W[ 0 ] [ 0 ] + ny*W[ 0 ] [ 1 ] ) ;

DeltaNW[1]= Deltat *( nx*W[ 1 ] [ 0 ] + ny*W[ 1 ] [ 1 ] ) ;

#i f RP 3D

DeltaNW[0]+= Deltat *( nz*W[ 0 ] [ 2 ] ) ;

DeltaNW[1]+= Deltat *( nz*W[ 1 ] [ 2 ] ) ;

DeltaNW[2]= Deltat *( nx*W[ 2 ] [ 0 ] + ny*W[ 2 ] [ 1 ] + nz*W[ 2 ] [ 2 ] ) ;

#e n d i f

#i f RP 2D

DeltaNA [0 ]=( nx*A[ 0 ] [ 0 ] + ny*A[ 1 ] [ 0 ] − ( nx*( nx*A[ 0 ] [ 0 ] + ny*A[ 1 ] [ 0 ] )+

ny*( nx*A[ 0 ] [ 1 ] + ny*A[ 1 ] [ 1 ] ) ) *nx ) *Deltat ;

DeltaNA [1 ]=( nx*A[ 0 ] [ 1 ] + ny*A[ 1 ] [ 1 ] − ( nx*( nx*A[ 0 ] [ 0 ] + ny*A[ 1 ] [ 0 ] )+

ny*( nx*A[ 0 ] [ 1 ] + ny*A[ 1 ] [ 1 ] ) ) *ny ) *Deltat ;

#e n d i f

#i f RP 3D

DeltaNA [0 ]=( nx*A[ 0 ] [ 0 ] + ny*A[ 1 ] [ 0 ] + nz*A[ 2 ] [ 0 ] − ( nx*( nx*A[ 0 ] [ 0 ] +

ny*A[ 1 ] [ 0 ] + nz*A[ 2 ] [ 0 ] )+ny*( nx*A[ 0 ] [ 1 ] + ny*A[ 1 ] [ 1 ] + nz*A

[ 2 ] [ 1 ] )+nz *( nx*A[ 0 ] [ 2 ] + ny*A[ 1 ] [ 2 ] + nz*A[ 2 ] [ 2 ] ) ) ) *Deltat ;

DeltaNA [1 ]=( nx*A[ 0 ] [ 1 ] + ny*A[ 1 ] [ 1 ] + nz*A[ 2 ] [ 1 ] − ( nx*( nx*A[ 0 ] [ 0 ] +

ny*A[ 1 ] [ 0 ] + nz*A[ 2 ] [ 0 ] )+ny*( nx*A[ 0 ] [ 1 ] + ny*A[ 1 ] [ 1 ] + nz*A

[ 2 ] [ 1 ] )+nz *( nx*A[ 0 ] [ 2 ] + ny*A[ 1 ] [ 2 ] + nz*A[ 2 ] [ 2 ] ) ) ) *Deltat ;

DeltaNA [2 ]=( nx*A[ 0 ] [ 2 ] + ny*A[ 1 ] [ 2 ] + nz*A[ 2 ] [ 2 ] − ( nx*( nx*A[ 0 ] [ 0 ] +

ny*A[ 1 ] [ 0 ] + nz*A[ 2 ] [ 0 ] )+ny*( nx*A[ 0 ] [ 1 ] + ny*A[ 1 ] [ 1 ] + nz*A

[ 2 ] [ 1 ] )+nz *( nx*A[ 0 ] [ 2 ] + ny*A[ 1 ] [ 2 ] + nz*A[ 2 ] [ 2 ] ) ) ) *Deltat ;

#e n d i f

#i f RP 2D

/*The e f f e c t s o f evo lu t i on equat ion are s to r ed in UDMs a f t e r

the d i r e c t o r components*/

C UDMI( c , t , 3 )=DeltaNW[0]+Lambda*DeltaNA [ 0 ] ;
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C UDMI( c , t , 4 )=DeltaNW[1]+Lambda*DeltaNA [ 1 ] ;

i f ( (C UDMI( c , t , 3 ) > 2 . 0 ) )

{
Message (”C UDMI( c , t , 3 ) i s : %e and C UDMI( c , t , 4 ) i s : %e .\n” ,

C UDMI( c , t , 3 ) ,C UDMI( c , t , 4 ) ) ;

}

i f (C UDMI( c , t , 3 ) == 0 . 0 )

{
Message (”C UDMI( c , t , 3 )= %e and C UDMI( c , t , 4 )= %e .\n” , C UDMI

( c , t , 3 ) ,C UDMI( c , t , 4 ) ) ;

}
/*

i f ( s q r t (pow(C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) >0.1)

{
Message (” Del tat i s too l a r g e and the magnitude o f dn i s l a r g e r

than 0 . 1 . \ n”) ;

Message (”New d i r e c t o r ’ s l ength f o r c e l l %i i s : %f \n” , c , s q r t (

pow(C UDMI( c , t , 3 ) , 2 )+pow(C UDMI( c , t , 4 ) , 2 ) ) ) ;

}*/

#e n d i f

#i f RP 3D

/*The e f f e c t s o f evo lu t i on equat ion are s to r ed in UDMs a f t e r

the d i r e c t o r components*/

C UDMI( c , t , 5 )=DeltaNW[0]+Lambda*DeltaNA [ 0 ] ;

C UDMI( c , t , 6 )=DeltaNW[1]+Lambda*DeltaNA [ 1 ] ;

C UDMI( c , t , 7 )=DeltaNW[2]+Lambda*DeltaNA [ 2 ] ;

i f ( s q r t (pow(C UDMI( c , t , 2 ) , 2 )+pow(C UDMI( c , t , 3 ) , 2 )+pow(C UDMI(

c , t , 4 ) , 2 ) ) >1.1)
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{
Message (” Del tat i s too l a r g e and the magnitude o f dn i s

l a r g e r than 0 . 1 . \ n”) ;

Message (”New d i r e c t o r ’ s l ength f o r c e l l %i i s : %f \n” , c , s q r t (

pow(C UDMI( c , t , 5 ) , 2 )+pow(C UDMI( c , t , 6 ) , 2 )+pow(C UDMI( c , t

, 7 ) , 2 ) ) ) ;

}

#e n d i f

}
end c loop ( c , t )

}
}

void Frank ( )

{
/*FILE *pf ;*/

Domain *domain=Get Domain (1 ) ;

Thread * t ;

Thread * t f ;

c e l l t c ;

c e l l t cn , c n ;

f a c e t f ;

i n t Neighbors ;

i n t n , i ;

double k=1e−2; /*Franks e l a s t i c constant */

double Energy =0.0 , d e l t a t=1e−4, R o t a t i o n a l v i s c o s i t y =10.0 ;

double nx , ny , nz , nx c , ny c , nz c , nx i , ny i , n z i ;

double delta mag , t h e t a i , de l tan x , de l tan y , d e l t a n z ;

t h r e a d l o o p c ( t , domain )

{
b e g i n c l o o p ( c , t )

{
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Neighbors =0; /*number o f ne ighbors o f a c e n t e r a l c e l l */ /*we

w i l l add to the number o f ne ighbors by

loop ing over the f a c e s o f each c e l l and

check ing i f the re i s a c e l l on the other

s i d e o f the f a c e . i f a f a c e o f the c e l l i s on

the boundary o f the domain , the re w i l l be no

ne ighbor ing c e l l on that f a c e .*/

de l tan x =0.0;

de l t an y =0.0;

d e l t a n z =0.0 ;

c f a c e l o o p ( c , t , n ) /*Loops over a l l the f a c e s o f a c e l l */

{
/* n i s l o c a l f a c e number */

f=C FACE( c , t , n ) ; /* r e tu rn s the g l o b a l f a c e number us ing the

l o c a l f a c e number */

t f=C FACE THREAD( c , t , n ) ; /* i s used to r e f e r e n c e the

a s s o c i a t e d f a c e thread */

i f ( !BOUNDARY FACE THREAD P( t f ) ) /* i f the f a c e t f i s not on

the boundary o f the domain*/

{
Neighbors++;

i f (F C0 ( f , t f )==c )

{
#i f RP 2D

/* the ne ighbor ing c e l l ’ s index */

c n=F C1 ( f , t f ) ;

/* x and y components o f the cente r c e l l ’ s d i r e c t o r */

nx c=C UDMI( c , t , 1 ) ;

ny c=C UDMI( c , t , 2 ) ;

/* x and y components o f the i−th neighbor o f the cente r

c e l l ’ s d i r e c t o r */

nx i=C UDMI( c n , t , 1 ) ;

ny i=C UDMI( c n , t , 2 ) ;
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/* t h e t a i i s the ang le between cente r c e l l ’ s d i r e c t o r and

neighbor i−th d i r e c t o r */

t h e t a i=acos ( ( nx i *nx c+ny i *ny c ) /( s q r t (pow( nx i , 2 )+pow(

ny i , 2 ) ) * s q r t (pow( nx c , 2 )+pow( ny c , 2 ) )+1e−10) ) ;

/* the e f f e c t o f i−th neighbor on the n i s c a l c u l a t e d

here and then added to the e f f e c t o f other ne ighbors */

delta mag=d e l t a t *k* s i n ( t h e t a i ) * cos ( t h e t a i ) /

R o t a t i o n a l v i s c o s i t y ;

de l t an x+=delta mag *( nx i−nx c ) ;

de l t an y+=delta mag *( ny i−ny c ) ;

Energy+=k /2.0*pow( s i n ( t h e t a i ) , 2 ) ;

// Message (” Franks Energy i s : %f \n” , Energy ) ;

#e n d i f

#i f RP 3D

/* the ne ighbor ing c e l l ’ s index */

c n=F C1 ( f , t f ) ;

/* coo rd ina t e s o f the cente r c e l l ’ s d i r e c t o r */

nx c=C UDMI( c , t , 2 ) ;

ny c=C UDMI( c , t , 3 ) ;

nz c=C UDMI( c , t , 4 ) ;

/* coo rd ina t e s o f the i−th ne ighbor ing c e l l */

nx i=C UDMI( c n , t , 2 ) ;

ny i=C UDMI( c n , t , 3 ) ;

n z i=C UDMI( c n , t , 4 ) ;

/* t h e t a i i s the ang le between cente r c e l l ’ s d i r e c t o r and

neighbor i−th d i r e c t o r */
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t h e t a i=acos ( ( nx i *nx c+ny i *ny c+n z i * nz c ) /( s q r t (pow( nx i

, 2 )+pow( ny i , 2 )+pow( nz i , 2 ) ) * s q r t (pow( nx c , 2 )+pow( ny c

, 2 )+pow( nz c , 2 ) )+1e−10) ) ;

/* the e f f e c t o f i−th neighbor on the n i s c a l c u l a t e d

here and then i s uadded to the e f f e c t o f other ne ighbors */

delta mag=d e l t a t *k* s i n ( t h e t a i ) * cos ( t h e t a i ) /

R o t a t i o n a l v i s c o s i t y ;

de l t an x+=delta mag *( nx i−nx c ) ;

de l t an y+=delta mag *( ny i−ny c ) ;

d e l t a n z+=delta mag *( nz i−nz c ) ;

Energy+=k /2.0*pow( s i n ( t h e t a i ) , 2 ) ;

#e n d i f

}
e l s e

{
#i f RP 2D

/* the ne ighbor ing c e l l ’ s index */

c n=F C0 ( f , t f ) ;

/* x and y components o f the cente r c e l l ’ s d i r e c t o r */

nx c=C UDMI( c , t , 1 ) ;

ny c=C UDMI( c , t , 2 ) ;

/* x and y components o f the i−th neighbor o f the cente r

c e l l ’ s d i r e c t o r */

nx i=C UDMI( c n , t , 1 ) ;

ny i=C UDMI( c n , t , 2 ) ;

/* t h e t a i i s the ang le between cente r c e l l ’ s d i r e c t o r and

neighbor i−th d i r e c t o r */

t h e t a i=acos ( ( nx i *nx c+ny i *ny c ) /( s q r t (pow( nx i , 2 )+pow(

ny i , 2 ) ) * s q r t (pow( nx c , 2 )+pow( ny c , 2 ) )+1e−10) ) ;
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/* the e f f e c t o f i−th neighbor on the n i s c a l c u l a t e d

here and then added to the e f f e c t o f other ne ighbors */

delta mag=d e l t a t *k* s i n ( t h e t a i ) * cos ( t h e t a i ) /

R o t a t i o n a l v i s c o s i t y ;

de l t an x+=delta mag *( nx i−nx c ) ;

de l t an y+=delta mag *( ny i−ny c ) ;

Energy+=k /2.0*pow( s i n ( t h e t a i ) , 2 ) ;

#e n d i f

#i f RP 3D

/* the ne ighbor ing c e l l ’ s index */

c n=F C0 ( f , t f ) ;

/* d i r e c t o r components o f the cente r c e l l ’ s d i r e c t o r */

nx c=C UDMI( c , t , 2 ) ;

ny c=C UDMI( c , t , 3 ) ;

nz c=C UDMI( c , t , 4 ) ;

/* d i r e c t o r components o f the i−th ne ighbor ing c e l l */

nx i=C UDMI( c n , t , 2 ) ;

ny i=C UDMI( c n , t , 3 ) ;

n z i=C UDMI( c n , t , 4 ) ;

/* t h e t a i i s the ang le between cente r c e l l ’ s d i r e c t o r and

neighbor i−th d i r e c t o r */

t h e t a i=acos ( ( nx i *nx c+ny i *ny c+n z i * nz c ) /( s q r t (pow( nx i

, 2 )+pow( ny i , 2 )+pow( nz i , 2 ) ) * s q r t (pow( nx c , 2 )+pow( ny c

, 2 )+pow( nz c , 2 ) )+1e−10) ) ;

/* the e f f e c t o f i−th neighbor on the n i s c a l c u l a t e d

here and then i s uadded to the e f f e c t o f other ne ighbors */

delta mag=d e l t a t *k* s i n ( t h e t a i ) * cos ( t h e t a i ) /

R o t a t i o n a l v i s c o s i t y ;
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de l tan x+=delta mag *( nx i−nx c ) ;

de l t an y+=delta mag *( ny i−ny c ) ;

d e l t a n z+=delta mag *( nz i−nz c ) ;

Energy+=k /2.0*pow( s i n ( t h e t a i ) , 2 ) ;

#e n d i f

}
}
}

/*Adding the summed de l tan to the components o f the d i r e c t o r

o f the c e n t r a l c e l l */

#i f RP 2D

C UDMI( c , t , 3 )+=de l tan x ;

C UDMI( c , t , 4 )+=de l tan y ;

#e n d i f

#i f RP 3D

C UDMI( c , t , 5 )+=de l tan x ;

C UDMI( c , t , 6 )+=de l tan y ;

C UDMI( c , t , 7 )+=d e l t a n z ;

#e n d i f

}
end c loop ( c , t )

}
// Message (” Total Franks Energy i s : %f ” , Energy ) ;

// Message (” Last theta i s : %f i s done .\n” , t h e t a i ) ;

}

void Trans la t i on ( )

{
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/*FILE *pf ;*/

Domain *domain=Get Domain (1 ) ;

Thread * t ,* t f ;

c e l l t c , cn , c n ;

f a c e t f ;

i n t Neighbors , n , i ; /**/

double d e l t a t=1e−4,A[ND ND] , ds , e s [ND ND] , A by es , dr0 [ND ND] , dr1 [

ND ND] , v e l [ND ND] , Energy =0.0 ,dx , Angle , alpha ;

t h r e a d l o o p c ( t , domain ) /*This part s e t s the c o r r e c t i o n UDMs to

zero be f o r e each run*/

{
b e g i n c l o o p ( c , t )

{
#i f RP 2D

C UDMI( c , t , 3 ) =0.0 ; /* the e f f e c t o f ne ighbors on nx o f c e l l c*/

C UDMI( c , t , 4 ) =0.0 ; /* the e f f e c t o f ne ighbors on ny o f c e l l c*/

C UDMI( c , t , 5 ) =0.0 ; /*number o f ne ighbors c o n t r i b u t i n g to a

c e l l c*/

C UDMI( c , t , 6 ) =0.0 ;

#e n d i f

#i f RP 3D

C UDMI( c , t , 5 ) =0.0 ; /* the e f f e c t o f ne ighbors on nx o f c e l l c*/

C UDMI( c , t , 6 ) =0.0 ; /* the e f f e c t o f ne ighbors on ny o f c e l l c*/

C UDMI( c , t , 7 ) =0.0 ; /* the e f f e c t o f ne ighbors on nz o f c e l l c*/

C UDMI( c , t , 8 ) =0.0;/*number o f ne ighbors c o n t r i b u t i n g to a c e l l

*/

#e n d i f

}
end c loop ( c , t )

}

t h r e a d l o o p c ( t , domain ) /*This part l oops over a l l c e l l s and

c a l c u l a t e s the e f f e c t o f each c e l l on i t ’ s ne ighbors */

{
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b e g i n c l o o p ( c , t )

{
Neighbors =0; /*number o f ne ighbors o f a c e l l */

c f a c e l o o p ( c , t , n ) /*Loops over a l l the f a c e s o f a c e l l */

{
/* n i s l o c a l f a c e number */

f=C FACE( c , t , n ) ; /* r e tu rn s the g l o b a l f a c e number us ing the

l o c a l f a c e number */

t f=C FACE THREAD( c , t , n ) ; /* i s used to r e f e r e n c e the

a s s o c i a t e d f a c e thread */

i f ( !BOUNDARY FACE THREAD P( t f ) ) /* I f the f a c e i s not a

boundary f a c e */

{
Neighbors++; /* I f f a c e f i s an i n t e r i o r face , c e l l c has a

ne ighbor on the other s i d e o f the f a c e f , so add 1 to the

number o f ne ighbors */

INTERIOR FACE GEOMETRY( f , t f ,A, ds , es , A by es , dr0 , dr1 ) ;

/* f o r f a c e f on thread t f , r e tu rn s the f o l l o w i n g to the

s o l v e r :

r e a l A[ND ND] : the area normal vec to r ( always po in t s from

C0 to C1)

r e a l ds : the d i s t ance between the c e l l c e n t r o i d s

r e a l e s [ND ND] : the un i t normal vec to r in the d i r e c t i o n

from c e l l c0 to c1

r e a l A by es : va lue (A.A) /(A. es )

r e a l dr0 [ND ND] : vec to r that connects the c en t r o id o f c0 to

the f a c e c en t r o id

r e a l dr1 [ND ND] : vec to r that connects the c en t r o id o f c1 to

the f a c e c en t r o id */

ND SET( ve l [ 0 ] , v e l [ 1 ] , v e l [ 2 ] , C U( c , t ) ,C V( c , t ) ,C W( c , t ) ) ;

/* a s s i g n s the components o f the v e l o c i t y o f the cente r c e l l

to the ve l [ND ND]*/
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i f (F C0 ( f , t f )==c )

{/*C0 i s the cente r c e l l here */

Angle=acos (NV DOT(A, ve l ) /(NV MAG(A) *NV MAG( ve l )+1e−10) ) ;

/* the ang le between the v e l o c i t y vec to r o f the cente r c e l l

and the area normal vec to r o f the f a c e f */

dx=NV MAG( ve l ) * cos ( Angle ) * d e l t a t ;

/* the d i s t anc e t r a v e l e d by c r y s t a l s normal to the f a c e f

due to the motion o f the f l u i d with v e l o c i t y ve l [ND ND]*/

i f ( ( Angle<1.5) )//&&(C UDMI( c n , t , 5 ) <1.0) )

{
C UDMI( c , t , 6 )=dx/ds ;

c n=F C1 ( f , t f ) ; /* the ne ighbor ing c e l l ’ s index */

#i f RP 2D

C UDMI( c n , t , 5 ) +=1.0;

i f ( ( dx/ds )>=1.0)

{
C UDMI( c n , t , 3 )+=C UDMI( c , t , 1 ) ;

C UDMI( c n , t , 4 )+=C UDMI( c , t , 2 ) ;

}
e l s e

{
C UDMI( c n , t , 3 )+=C UDMI( c n , t , 1 ) ;

C UDMI( c n , t , 4 )+=C UDMI( c n , t , 2 ) ;

// alpha=acos ( (C UDMI( c , t , 1 ) *C UDMI( c n , t , 1 )+C UDMI( c , t

, 2 ) *C UDMI( c n , t , 2 ) ) / s q r t (pow(C UDMI( c , t , 1 ) , 2 )+

// pow(C UDMI( c , t , 2 ) , 2 ) ) / s q r t (pow(C UDMI( c n , t , 1 ) , 2 )+pow(

C UDMI( c n , t , 2 ) , 2 ) ) ) ;
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// i f ( alpha <1.571)

// {
// C UDMI( c n , t , 3 )+=(dx/ds ) *(C UDMI( c , t , 1 )−C UDMI( c n , t

, 1 ) )+C UDMI( c n , t , 1 ) ;

// C UDMI( c n , t , 4 )+=(dx/ds ) *(C UDMI( c , t , 2 )−C UDMI( c n , t

, 2 ) )+C UDMI( c n , t , 2 ) ;

// }
// e l s e

// {
// i f (C UDMI( c , t , 1 ) <0.0)

// {
// C UDMI( c n , t , 3 )+=(dx/ds ) *((−1.0) *C UDMI( c , t , 1 )−C UDMI(

c n , t , 1 ) )+C UDMI( c n , t , 1 ) ;

// C UDMI( c n , t , 4 )+=(dx/ds ) *((−1.0) *C UDMI( c , t , 2 )−C UDMI(

c n , t , 2 ) )+C UDMI( c n , t , 2 ) ;

// }
// e l s e

// {
// C UDMI( c n , t , 3 )+=(dx/ds ) *(C UDMI( c , t , 1 )+C UDMI( c n , t

, 1 ) )−C UDMI( c n , t , 1 ) ;

// C UDMI( c n , t , 4 )+=(dx/ds ) *(C UDMI( c , t , 2 )+C UDMI( c n , t

, 2 ) )−C UDMI( c n , t , 2 ) ;

// }
// }

}

i f ( ( dx/ds ) > 2 . 5 )

{
Message (” dx/ds i s : %e f o r c e l l %i . d e l t a t should be

reduced to reduce the dx f o r the g iven v e l o c i t y .\n” ,

dx/ds , c ) ;

}
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#e n d i f

#i f RP 3D

C UDMI( c n , t , 8 ) +=1;

i f ( ( dx/ds )>=1.0)

{
C UDMI( c n , t , 5 )+=C UDMI( c , t , 2 ) ;

C UDMI( c n , t , 6 )+=C UDMI( c , t , 3 ) ;

C UDMI( c n , t , 7 )+=C UDMI( c , t , 4 ) ;

}
e l s e

{
C UDMI( c n , t , 5 )+=C UDMI( c n , t , 2 ) ; //( dx/ds ) *(C UDMI( c , t

, 2 )−C UDMI( c n , t , 2 ) )+C UDMI( c n , t , 2 ) ;

C UDMI( c n , t , 6 )+=C UDMI( c n , t , 3 ) ; //( dx/ds ) *(C UDMI( c , t

, 3 )−C UDMI( c n , t , 3 ) )+C UDMI( c n , t , 3 ) ;

C UDMI( c n , t , 7 )+=C UDMI( c n , t , 4 ) ; //( dx/ds ) *(C UDMI( c , t

, 4 )−C UDMI( c n , t , 4 ) )+C UDMI( c n , t , 4 ) ;

}

#e n d i f

}
}
e l s e

{/*C1 i s the cente r c e l l here */

// t h i s i s wrong ! A=(−1.0)*A;

f o r ( i =0; i<ND ND;++ i )A[ i ]=(−1.0)*A[ i ] ;

Angle=acos (NV DOT(A, ve l ) /(NV MAG(A) *NV MAG( ve l )+1e−10) ) ;

/* the ang le between the v e l o c i t y vec to r o f the cente r c e l l

and the area normal vec to r o f the f a c e f */

dx=NV MAG( ve l ) * cos ( Angle ) * d e l t a t ;



131

/* the d i s t anc e t r a v e l e d by c r y s t a l s normal to the f a c e f

due to the motion o f the f l u i d with v e l o c i t y ve l [ND ND]*/

i f ( ( Angle<1.1) )//&&(C UDMI( c n , t , 5 ) <1.0) )

{

C UDMI( c , t , 6 )=dx/ds ;

/* the ne ighbor ing c e l l ’ s index */

c n=F C0 ( f , t f ) ;

#i f RP 2D

C UDMI( c n , t , 5 ) +=1.0;

i f ( ( dx/ds )>=1.0)

{
C UDMI( c n , t , 3 )+=C UDMI( c , t , 1 ) ;

C UDMI( c n , t , 4 )+=C UDMI( c , t , 2 ) ;

}
e l s e

{
C UDMI( c n , t , 3 )+=C UDMI( c n , t , 1 ) ;

C UDMI( c n , t , 4 )+=C UDMI( c n , t , 2 ) ;

// alpha=acos ( (C UDMI( c , t , 1 ) *C UDMI( c n , t , 1 )+C UDMI( c , t

, 2 ) *C UDMI( c n , t , 2 ) ) / s q r t (pow(C UDMI( c , t , 1 ) , 2 )+

// pow(C UDMI( c , t , 2 ) , 2 ) ) / s q r t (pow(C UDMI( c n , t , 1 ) , 2 )+pow(

C UDMI( c n , t , 2 ) , 2 ) ) ) ;

// i f ( alpha <1.571)

// {
// C UDMI( c n , t , 3 )+=(dx/ds ) *(C UDMI( c , t , 1 )−C UDMI( c n , t

, 1 ) )+C UDMI( c n , t , 1 ) ;

// C UDMI( c n , t , 4 )+=(dx/ds ) *(C UDMI( c , t , 2 )−C UDMI( c n , t

, 2 ) )+C UDMI( c n , t , 2 ) ;

// }
// e l s e

// {
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// i f (C UDMI( c , t , 1 ) <0.0)

// {
// C UDMI( c n , t , 3 )+=(dx/ds ) *((−1.0) *C UDMI( c , t , 1 )−C UDMI(

c n , t , 1 ) )+C UDMI( c n , t , 1 ) ;

// C UDMI( c n , t , 4 )+=(dx/ds ) *((−1.0) *C UDMI( c , t , 2 )−C UDMI(

c n , t , 2 ) )+C UDMI( c n , t , 2 ) ;

// }
// e l s e

// {
// C UDMI( c n , t , 3 )+=(dx/ds ) *(C UDMI( c , t , 1 )+C UDMI( c n , t

, 1 ) )−C UDMI( c n , t , 1 ) ;

// C UDMI( c n , t , 4 )+=(dx/ds ) *(C UDMI( c , t , 2 )+C UDMI( c n , t

, 2 ) )−C UDMI( c n , t , 2 ) ;

// }
// }
}

i f ( ( dx/ds ) > 2 . 5 )

{
Message (” dx/ds i s : %e f o r c e l l %i . d e l t a t should be

reduced to reduce the dx f o r the g iven v e l o c i t y .\n” ,

dx/ds , c ) ;

}

// i f ( ( c % 200) == 0) /*min<(DeltaNW [ 0 ] / DeltaNW [ 1 ] ) ) */

// {
// Message (” dx/ds i s : %e .\n” , dx/ds ) ;

// }

#e n d i f

#i f RP 3D

C UDMI( c n , t , 8 ) +=1.0; /*number o f ne ighbors */

i f ( ( dx/ds )>=1.0)
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{
C UDMI( c n , t , 5 )+=C UDMI( c , t , 2 ) ;

C UDMI( c n , t , 6 )+=C UDMI( c , t , 3 ) ;

C UDMI( c n , t , 7 )+=C UDMI( c , t , 4 ) ;

}
e l s e

{
C UDMI( c n , t , 5 )+=C UDMI( c n , t , 2 ) ; / / ( dx/ds ) *(C UDMI( c , t , 2 )

−C UDMI( c n , t , 2 ) )+C UDMI( c n , t , 2 ) ;

C UDMI( c n , t , 6 )+=C UDMI( c n , t , 3 ) ; / / ( dx/ds ) *(C UDMI( c , t , 3 )

−C UDMI( c n , t , 3 ) )+C UDMI( c n , t , 3 ) ;

C UDMI( c n , t , 7 )+=C UDMI( c n , t , 4 ) ; / / ( dx/ds ) *(C UDMI( c , t , 4 )

−C UDMI( c n , t , 4 ) )+C UDMI( c n , t , 4 ) ;

}
i f ( ( dx/ds ) > 2 . 5 )

{
Message (” dx/ds i s : %e f o r c e l l %i . d e l t a t should be

reduced to reduce the dx f o r the g iven v e l o c i t y .\n” ,

dx/ds , c ) ;

}
#e n d i f

}
}
}
}
// Message (” dx/ds i s : %e f o r c e l l %i . \n ” , dx/ds , c ) ;

}
end c loop ( c , t )

}
// Message (” dx/ds i s : %e f o r c e l l %i . ” , dx/ds , c ) ;

}

void I n i t i a l c o n d i t i o n ( )

{
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Domain *domain=Get Domain (1 ) ;

Thread * t ;

c e l l t c ;

f a c e t f ;

r e a l x [ND ND ] ;

i n t i ;

t h r e a d l o o p c ( t , domain )

{
b e g i n c l o o p ( c , t )

{
C CENTROID(x , c , t ) ;

#i f RP 2D

C UDMI( c , t , 0 ) = 0 . 0 ; / / 3 . 14 1 6/ 2 . 0 ;

Set User Memory Name (0 ,” a n g l e f r o m x a x i s ”) ;

Set User Memory Name (1 ,” d i r ec to r s x component ”) ;

Set User Memory Name (2 ,” d i r ec to r s y component ”) ;

C UDMI( c , t , 1 )=cos (C UDMI( c , t , 0 ) ) ; /* x component o f the d i r e c t o r

*/

C UDMI( c , t , 2 )=s i n (C UDMI( c , t , 0 ) ) ; /* y component o f the d i r e c t o r

*/

#e n d i f

#i f RP 3D

i f ( x [2 ] <0 .01)

{
C UDMI( c , t , 2 ) =1.0 ;

C UDMI( c , t , 3 ) =0.0 ;

C UDMI( c , t , 4 ) =0.0 ;

}
e l s e

{
C UDMI( c , t , 2 ) =0.0 ;

C UDMI( c , t , 3 ) =0.0 ;
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C UDMI( c , t , 4 ) =1.0 ;

}

#e n d i f

}
end c loop ( c , t )

}
}

void OrderParameter ( )

{
Domain *domain=Get Domain (1 ) ;

Thread * t ;

c e l l t c ;

f a c e t f ;

// r e a l x [ND ND ] ;

i n t i =1, j =1,k ;

r e a l Pi =3.1416;

r e a l d e l t a t h e t a=Pi / 1 8 0 . 0 ;

r e a l theta =0.0 ,S=0.0 ;

r e a l f f [ 3 6 0 ] ;

f o r ( j =1; j <360; j++)

f f [ j ] = 0 . 0 ;

t h r e a d l o o p c ( t , domain ) /*This part c a l c u l a t e s the ang le o f the

d i r e c t o r s f o r

each c e l l based on the n x , x y and in case o f 3D s imu la t i on s

n z */

{
b e g i n c l o o p ( c , t )

{
// C CENTROID(x , c , t ) ;

#i f RP 2D
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i f (C UDMI( c , t , 1 ) ==0)C UDMI( c , t , 1 ) =0.00001;

C UDMI( c , t , 0 )=atan (C UDMI( c , t , 2 ) /C UDMI( c , t , 1 ) ) ;

#e n d i f

#i f RP 3D

#e n d i f

}
end c loop ( c , t )

}

t h r e a d l o o p c ( t , domain )

{
b e g i n c l o o p ( c , t )

{
// C CENTROID(x , c , t ) ;

#i f RP 2D

// i =1;

f o r ( theta =0.0 ; theta<=Pi ; theta=theta+d e l t a t h e t a )

{
i f (C UDMI( c , t , 0 )>=theta && C UDMI( c , t , 0 )<( theta+d e l t a t h e t a ) )

{
k=theta *180/ Pi ;

f f [ k+1]= f f [ k+1]+1;

i ++;

break ;

}
}

#e n d i f

#i f RP 3D

/* In the 2D case , x d i r e c t i o n i s cons ide r ed as the d i r e c t o r

d i r e c t i o n
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and the i n t e g r a t i o n i s done from 0 (x−d i r e c t i o n ) to Pi (−x

d i r e c t i o n )

In t h i s case , the f i r s t UDM i s the ang le that was c a l c u l a t e d in

the

random ( ) f u c t i o n . f o r the ca s e s in which the e f f e c t s o f the

Franks ,

evo lut ion , and t r a n s l a t i o n i s appl ied , the ang le should be

c a l c u l a t e d

from the f i n a l o r i e n t a t i o n s to r ed in C UDMI( c , t , 1 )=n x and

C UDMI( c , t , 2 )=n y

For the 3D case , the d i r e c t o r should be g iven i f we want to

c a l c u l a t e

the order parameter . */

#e n d i f

}
end c loop ( c , t )

}

// Message (”The number o f c e l l s are : %d \n” , i ) ;

f o r ( theta =0.0 ; theta<=Pi ; theta=theta+d e l t a t h e t a )

{
k=theta *180/ Pi ;

f f [ k+1]= f f [ k+1]/ i ;

}

// t h r e a d l o o p c ( t , domain )

// {
// b e g i n c l o o p ( c , t )

// {
#i f RP 2D

j =1;

f o r ( theta =0.0 ; theta<=Pi ; theta=theta+d e l t a t h e t a )

{
k=theta *180/ Pi ;
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S=S+(1.0−3.0/2.0*pow( s i n ( theta ) ,2 ) ) * f f [ k +1] ; // order parameter

, s u r f a c e i n t e g r a l over a un i t sphere

j=j +1;

// Message (” i= %d , k= %d , j= %d , S= %e , P( j )= %e \n” , i , k ,

j , S , f f [ k+1]) ;

}
#e n d i f

#i f RP 3D

#e n d i f

// }
// end c loop ( c , t )

// }
Message (”The order parameter (S) i s : %e , theta i s : %e maximum k

i s : %d\n” , S , theta , k ) ;

}


