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Abstract

“Granger causality” is a methodology, first proposed in 1969 by Clive Granger,

for detecting causal relationships between two stochastically fluctuating quantities. I

will present several equivalent ways of describing this methodology. In Granger’s

original work, it was assumed that the stochastic quantities are discretized Ornstein-

Uhlenbeck processes, that is, AR(1) processes. Thus the deterministic piece of the

dynamics is simply relaxation into a stable steady state. If the deterministic dynamics

are more complicated, Granger causality is not applicable, but the idea of one of the

equivalent versions that I present has a relatively straightforward generalization. I

present numerical experiments testing the application of this idea to noisy oscillators

that are coupled in one direction or the other, with the goal of deducing the direction

of the coupling from observed solutions.
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1 Introduction

Causality can be understood as a relation between one event (a cause) and another event

(an effect). The cause must precede the effect, and must have some explanatory power in

determining why and how the effect occurred. There are many variations on how to pre-

cisely define and determine causality, and there are in fact many different types of causality.

For example, if an event A causes an event B in the deterministic sense, then event A is

always followed by event B. Consider the following: When you press a key on a piano, a

hammer will strike some strings in the body of the instrument, producing a sound which

we interpret as a note on the piano. The physical event of pressing the key (cause) deter-

ministically produced the occurrence of the sound (effect) which you hear as a result of

the cause. Another type of causality is probabilistic causality. In the probabilistic sense of

causality, if an event A probabilistically causes an event B, then the occurrence of event A

will increase the probability of the occurrence of event B. For example, smoking is a prob-

abilistic cause for cancer. Not every person who smokes will get lung cancer, but smoking

increases the probability that a person will get lung cancer later in life. In most physical

situations, probabilistic causality reflects improper knowledge of a deterministic system.

Identifying causal relationships between dynamical systems is a fundamental problem

in the natural sciences. In fact, many physical laws are mathematical relationships describ-

ing causal interactions between different variables. It would seem that a natural question

to ask is, can one determine a causal relationship between two dynamic variables (i.e.,

two time-dependent variables) from observations? This is precisely the question which the

notion of Granger causality is designed to answer in a very simple case.

The idea of prescribing a statistical test to determine causality between two dynamical

systems was introduced by Wiener in 1956 [1]. He labeled this type of causality “com-

putationally measurable” and described it as follows: “For two simultaneously measured
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signals, if we can predict the first signal better by using the past information from the sec-

ond one than by using the information without it, then we call the second signal causal

to the first one.” This concept was made more rigorous by the British economist Clive W.

Granger in the 1960s [2], in which Granger developed a statistical test for testing for causal-

ity between two time series. This method is called “Granger causality”, as it only provides

evidence for causality, but does not prove the existence of a causal relationship. Granger

proposed the following test for causality.

Definition 1.1. Let X and Y be two discrete-time stochastic processes. Suppose we try to

predict Yk+1 using only the past of Y , and then we try to predict Yk+1 using both the past of

X and Y . If the second prediction is significantly more successful than the first, than we say

that X Granger causes Y . “Significantly more successful”, of course, needs an explanation,

to be given later.

Typically, we are given a set of observations from two discrete-time stochastic pro-

cesses, X and Y , and we want to determine if there exists a causal relationship between

these two processes. We have the 4 following possible scenarios: X G-causes Y , Y G-

causes X , there is no G-causation in either direction, or there is G-causation in both direc-

tions. The last scenario, where there is mutual causation is known as a feed-back stochastic

system. In Granger causality analysis, we have to test for all of these scenarios. Typically,

one can set up two hypothesis tests to test for bivariate Granger causality:

H0 : X does not G-cause Y, HA : X G-causes Y.

H0 : Y does not G-cause X , HA : Y G-causes X .

What Granger causality does not account for are confounding variables. For example,

suppose there is a third variable, Z, which influences X and Y . If we do not have any
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information about Z, then we are unable to measure the effects of Z on X and Y . One pitfall

of Granger causality analysis is that we may falsely conclude that X G-causes Y , when in

reality, Z influences X , and shortly thereafter influences Y .

Granger originally proposed his concept of Granger causality in the context of discrete-

time stochastic processes. We begin with the concept of causality in a deterministic con-

tinuous time dynamical system. Then, we discuss the discrete-time stochastic processes

in which Granger first proposed Granger analysis. Finally, we add noise to continuous

time dynamical systems, specifically phase-locking oscillators, and look at how the idea of

Granger causality can be applied in this more general setting.
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2 Detecting Causality in Deterministic Systems

2.1 First Order Linear System

Let A ∈ R2×2 and consider the dynamical system, x(t) ∈ R2 with components x and y,

defined by the following differential equation

dx
dt

= Ax, x(0) = x0, (1)

where

x(t) =

x(t)

y(t)

 .
Solutions to this equation will be of the form

x(t) = c1eλ1tv1 + c2eλ2tv2, (2)

where c1 and c2 are constants determined by the initial conditions x(0) = x0, λ1 and λ2

are the eigenvalues of A associated with eigenvectors v1 and v2. Note that λ1,λ2 may be

complex, as well as their associated eigenvectors. To see why this is a solution to the above

differential equation, simply differentiate both sides of the equation to get

dx
dt

= c1eλ1t
λ1v1 + c2eλ2t

λ2v2

= c1eλ1tAv1 + c2eλ2tAv2

= A
(

c1eλ1tv1 + c2eλ2tv2

)
= Ax.
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It is clear from Equation (2) that the solution x(t) will grow exponentially fast if

Re(λ1) > 0 or Re(λ2) > 0. The eigenvalues of A, λ1 and λ2, will satisfy the equation

det(A−λI) = 0.

det(A−λI) = 0 =⇒ λ
2− τλ+d = 0 =⇒ λ =

τ±
√

τ2−4d
2

,

where τ = trace(A), d = det(A). From this, we see that solutions will grow exponentially

fast, or will be unstable, if τ±
√

τ2−4d > 0. Since we are only interested in stable solu-

tions which don’t grow exponentially fast, we restrict ourselves to matrices A, for which

trace(A) < 0 and det(A) > 0. Here is a sample solution where the fixed point (0,0) is a

stable node.

0 10 20 30 40 50
−2

0

2

t

Student Version of MATLAB

Figure 1: Two components of solution x(t) satisfying (1)

Suppose we have a solution to this dynamical system, {xk}N
k=0, where xk = x(∆tk), and

we want to estimate the matrix A from this solution. Pick two points in time t1 = ∆t j and

t2 = ∆tl, sucht that t1 6= t2, and j, l ∈ [0,N]. Next, we can approximate the derivative of x

at times t1 and t2 by the following approximations:

x′(t1)≈
x(t1 +∆t)−x(t1−∆t)

2∆t
≈ Ax(t1), (3)

x′(t2)≈
x(t2 +∆t)−x(t2−∆t)

2∆t
≈ Ax(t2). (4)

Re-writing x in terms of x and y, we define the 2×2 matrices, B and C to be the following:
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B =
1

2∆t

x(t1 +∆t)− x(t1−∆t) x(t2 +∆t)− x(t2−∆t)

y(t1 +∆t)− y(t1−∆t) y(t2 +∆t)− y(t2−∆t)

 , (5)

C =

x(t1) x(t2)

y(t1) y(t2)

 . (6)

From this, it follows that B≈ AC. So,

A≈ BC−1. (7)

In order to estimate A in this way, we need to ensure that the matrix C has a small

condition number. For example, in the previous example, if we pick the times t1 = 1 and

t2 = 2, the two vectors x(t1) and x(t2) are far from dependent. We can plot them in the

(x,y)-plane, along with the solution x(t) in the (x,y)-plane to get the following figure.

0 0.5 1 1.5 2
−0.5

0

0.5

1

x

y

Student Version of MATLAB

Figure 2: Vectors x(t1) and x(t2) plotted in the (x,y)-plane

The coefficient matrix for this example was

A =

−0.4 −0.5

−0.5 −0.8

 .
Each entry in our estimate for the coefficient matrix using the method described above,
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and choosing t1 and t2 in a smart way, has an error O(∆t2), since the estimate for dx
dt has an

error of O(∆t2). In fact, using t1 = 1 and t2 = 2, and a step-size of ∆t = 0.01, our estimate

for A is accurate to 7 digits in each entry. However, if we use the times t1 = 40 and t2 = 41

to estimate the matrix A, we get the following estimate,

Aest =

−7.25 −10.64

6.25 9.17

 .
This estimate is terrible! The vectors x(40) and x(41) are almost linearly dependent, so

the condition number for the matrix C is huge, so we cannot invert the matrix accurately,

and hence cannot get a good estimate for A using the times t1 = 40 and t2 = 41. This

example highlights an interesting point, namely, if we only observe the first order linear

system when it is close to a stable node, then we are unable to estimate the matrix A

accurately. It is only possible to detect causal interactions between the elements of x when

the system is far enough away from the stable node. Note the issue of ill-conditioning of

the matrix C goes away when the fixed point is a spiral.

2.2 Coupled Phase Oscillators

A phase oscillator is defined by the following autonomous ODE

dθ

dt
= ω, ω > 0. (8)

In this equation, θ represents the phase of the oscillator, and ω the phase speed. So, what

really oscillates in this model is cos(θ) or sin(θ). The period of the limit cycle oscillation,

the time it takes for the phase oscillator to complete one loop around the unit circle, S1, is

T = 2π

ω
. And so, the frequency of the phase oscillator is f = 1

T = ω

2π
.

We can couple two phase oscillators, θ1 and θ2, by adding a coupling term to each

phase oscillator which is dependent on the phase difference between the two oscillators.
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We define the coupled phase oscillator model as follows:

dθ1

dt
= ω1 + c12 sin(θ2−θ1), (9)

dθ2

dt
= ω2 + c21 sin(θ1−θ2), (10)

where ω1 > 0, ω2 > 0, c12 ≥ 0, c21 ≥ 0. Define the phase difference between the two phase

oscillators to be η := θ1−θ2. So, if the two phase oscillators are phase-locked, then their

phase difference is a constant, and dη

dt = 0. Define F(η) = dη

dt . Then,

F(η) =
d(θ1−θ2)

dt
= ω1−ω2− (c12 + c21)sinη.

Setting F(η) = 0, we can solve for the parameters ω1, ω2, c12, c21, for which phase-

locking is possible.

F(η) = 0 ⇐⇒ ω1−ω2− (c12 + c21)sinη = 0 ⇐⇒ sinη =
ω1−ω2

c12 + c21
.

We know |sinη| ≤ 1. Thus, phase-locking is only possible if

∣∣∣∣ ω1−ω2

c12 + c21

∣∣∣∣≤ 1 =⇒ |ω1−ω2| ≤ c12 + c21

We can determine the stability of the synchronous state by plotting η vs. F(η), and

observing where F(η) crosses the line F(η) = 0. The synchronous state, or phase-locked

state, will be stable at values of η where F(η) crosses the line F(η) = 0 with a negative

slope.
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Figure 3: F(η) vs. η with stable and unstable fixed points

If we assume |ω1−ω2| ≤ c12 + c21 in the coupled phase oscillator model, then we can

calculate the exact phase difference of the stable phase-locked state. The phase-locked

state occurs at the value of η for which F(η) = 0 and F ′(η)< 0. We know that F(η) = 0

iff sinη = ω1−ω2
c12+c21

. Thus, there exists a fixed point at η = arcsin
(

ω1−ω2
c12+c21

)
. Since we are

assuming |ω1−ω2| ≤ c12 + c21, we know −1 ≤ ω1−ω2
c12+c21

≤ 1, and thus this fixed point lies

in the interval
[
−π

2 ,
π

2

]
.

F ′(η) =
d

dη
(ω1−ω2− (c12 + c21)sinη) =−(c12 + c21)cosη.

Thus, F ′(η) < 0 iff cosη > 0. Since the fixed point arcsin
(

ω1−ω2
c12+c21

)
∈
[
−π

2 ,
π

2

]
, this

is precisely the stable fixed point of the system, and so the phase locked state will have a

phase difference of θ1−θ2 = arcsin
(

ω1−ω2
c12+c21

)
.

In the phase-locked state, the phase speed of θ1 and θ2 are equal, and they are constant.

Thus, to calculate the phase speed of the phase-locked state, we just need to calculate the

phase speed of either θ1 or θ2 when θ1−θ2 = arcsin
(

ω1−ω2
c12+c21

)
. Calculating dθ2

dt at the stable

fixed point, we have
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dθ2

dt
= ω2 + c21 sin

(
arcsin

(
ω1−ω2

c12 + c21

))
= ω2 + c21

(
ω1−ω2

c12 + c21

)
=

c21

c12 + c21
ω1 +

c12

c12 + c21
ω2.

Therefore, the frequency of the phase-locked state will be

1
2π

(
c21

c12 + c21
ω1 +

c12

c12 + c21
ω2

)
. (11)

We are interested in detecting causality between two phase oscillators from a given

set of observations. The motivation behind this question lies at the heart of neuroscience.

Neural oscillations are often observed in EEG signals, and it is of great interest to determine

if neuronal activity in one brain area influences the activity in another area.

Suppose we are given a set of observations from two phase oscillators, {cos(θk)}N
k=0,

where θk = [θ1k;θ2k]
′, and θk = θ(∆tk). Can we determine if θ1 influences θ2, or θ2 influ-

ences θ1? We know that if c12 = 0, then dθ1
dt will be constant for all time t. Similarly, if

c21 = 0, then dθ2
dt will be constant for all time t. Suppose c12 = 0. Then, dθ1

dt = ω1. Thus,

θ1(t) = θ1(0)+ω1t =⇒ cos(θ1(t)) = cos(θ1(0)+ω1t).

Using the sum formula for cosine, we can write this as

cos(θ1(t)) = cos(θ1(0))cos(ω1t)− sin(θ1(0))sin(ω1t).

Differentiating both sides with respect to t, we find:
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d cos(θ1(t))
dt

=−ω1 cos(θ1(0))sin(ω1t)−ω1 sin(θ1(0))cos(ω1t)

=−ω1 (sin(θ1(0))cos(ω1t)+ cos(θ1(0))sin(ω1t))

=−ω1 (sin(θ1(0)+ω1t))

=−ω1 sin(θ1(t)).

Thus, if c12 = 0, then
(

cos(θ1(t)),
d cos(θ1(t))

dt

)
will rotate clockwise around the ellipse

with vertices (1,0),(−1,0),(0,ω1),(0,−ω1). Similarly, if c21 = 0, then
(

cos(θ2),
d cos(θ2)

dt

)
will rotate clockwise around the ellipse with vertices (1,0),(−1,0),(0,ω2),(0,−ω2). So,

to determine causality from θ2 to θ1 in this dynamical system, we can first estimate the

derivative of cos(θ1) at each point in time, and plot d cos(θ1(t))
dt vs. cos(θ1). If the trajectory

does not strictly follow the path of an ellipse in the plane, then cos(θ2) must influence

cos(θ1), assuming cos(θ1) and cos(θ2) are the only variables of interest in this system. We

can also do the same type of analysis to check if cos(θ1) influences cos(θ2). Here are some

examples.
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Figure 4: One Way Causality in Coupled Phase Oscillators
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Figure 5: Mutual Causality in Coupled Phase Oscillators

If the two phase oscillators start in a phase-locked state, then we cannot determine the

direction of causality without knowing ω1 and ω2. Similar to the first-order linear system,

in which the transition to the stable fixed point contained information about causality, for

the phase oscillators, the transition to the phase-locked state contains information about

causality, not the synchronous state itself. However, if the phase oscillators do not phase

lock, then we will always be able to determine the direction of causality, regardless of initial

conditions.
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Figure 6: Non Phase-Locking Phase Oscillators

In this example, we see that the phase oscillators are very close to a synchronous state,

however, due to the violation of the phase-locking condition, they will never phase lock. A

little after time t = 120, the phase difference changes dramatically, which can be seen in

the first image. During this time interval, the underlying dynamics become clear, which we

can see in the bottom two pictures, and we conclude that cos(θ2) influences cos(θ1), but

cos(θ1) has no influence over cos(θ2).

2.3 Wilson-Cowan Oscillator

The simplified Wilson-Cowan Oscillator models the network dynamics of an oscillator with

two variables, one excitatory (E) and one inhibitory (I), which can be thought of as firing

rates of excitatory and inhibitory cells in a neuronal network. In the original 1972 paper

[3], Wilson and Cowan defined E(t) and I(t) to be the proportion of E-cells and I-cells

firing per unit time at the instant t. The oscillatory nature of the model arises due to the

negative feedback the inhibitory cells give to the excitatory cells, after receiving a positive

input from the excitatory cells. Here, we present a dramatically simplified version of the

model proposed by Wilson himself in 1999 [4]. The model is defined by a system of 2

non-linear ODEs.
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dE
dt

=
E∞−E

5
, (12)

dI
dt

=
I∞− I

10
. (13)

When E-cells fire, they give an excitatory input to neighboring cells through synapses.

Similarly, when I-cells fire, they give an inhibitory input to neighboring cells. We assume

that for a given E and I, the value of E is driven towards a value E∞ which is an increasing

function of E and a decreasing function of I. In the simplified Wilson-Cowan model, E∞ is

a sigmoidal function with the following form:

E∞ =


(c1E− c2I +K)2

9+0.01(c1E− c2I +K)2 if c2I ≤ c1E +K

0 otherwise
(14)

The dynamics of I are modeled in the same way, however, we assume they are not

externally driven, and strictly receive an excitatory input from the variable E, that is, they

do not self-inhibit.

I∞ =
(d1E)2

9+0.01(d1E)2 . (15)

with c1,c2,d1 ≥ 0. In the simplified model, Wilson chose the parameters c1 = 1.6,

c2 = 1, and d1 = 1.5. These parameters can be thought of as the connection strengths, and

represent the average number of excitatory and inhibitory synapses per cell. K is a constant

that determines external drive to the E-cells in the network. Here is a network diagram of

the Wilson-Cowan oscillator, with a filled in circle representing an inhibitory input, and an

open circle representing an excitatory input.
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Figure 7: Wilson-Cowan Oscillator Network Diagram

In the Wilson-Cowan oscillator, E(t) and I(t) should be thought of as the proportion of

E-cells and I-cells firing per unit time at instant t. So, we assume that 0≤ E(t)≤ 100 and

0 ≤ I(t) ≤ 100 for all time t ≥ 0. We can understand the dynamics of the Wilson-Cowan

oscillator by looking at the nullclines of both E and I. The nullcline of E occurs along the

curve at which dE
dt = 0, which occurs when E = E∞:

E =


(1.6E−I+K)2

9+0.01(1.6E−I+K)2 if I ≤ 1.6E +K

0 otherwise

First, we solve for the values of I which satisfy the first equation in the this array, and

then restrict ourselves to those values of I for which I ≤ K + 1.6E. The first equation in

this array is a quadratic equation for I, and solving for I as a function of E, we find

9E = (1−0.01E)(1.6E− I +K)2 =⇒ I = 1.6E +K±
√

9E
1−0.01E

Enforcing the restriction that I ≤ 1.6E +K, we get

I = 1.6E +K−
√

9E
1−0.01E

Similarly, we can solve for the nullcline of I, which occurs along the curve dI
dt = 0, at

which
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I =
(1.5E)2

9+0.01(1.5E)2

We note that the I-nullcline is independent of K. Thus, modifying K only affects the

E-nullcline. We can plot these two nullclines in the E, I-phase plane to get the following

image for various values of K. The points at which the two nullclines cross are the fixed

points of the dynamical system.
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Figure 8: E-nullclines are in blue, I-nullcline is in red, dashed black lines are corresponding lines I = 1.6E +K for each K.

For K = 0, the nullclines cross at the point (0,0). As K increases, the point of inter-

section moves along the I-nullcline, until K reaches a value for which there are 2 crossings

of the nullclines. As K continues to increases, a third crossing comes into existence. As

K continues to increase further, an annihilation occurs between the two left crossings, and

only one exists in the [0,100]× [0,100] plane.

A transition from a stable fixed point to a periodic solution occurs via a supercritical

Hopf bifurcation, in which a stable spiral becomes an unstable spiral and a periodic solution

(or stable limit cycle) appears. Eventually, the stable limit cycle disappears, as K reaches

a threshold value, after which the system has a globally attracting node at the right-most
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crossing of the two nullclines. To understand this visually, we look at the phase-space

portraits of the solution to the Wilson-Cowan Oscillator with various values of K.
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Figure 9: Solution for K = 0
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Figure 10: Solution for K = 10

0 20 40 60 80 100
0

20

40

60

80

100

E(t)

I
(t
)

Student Version of MATLAB

Figure 11: Solution for K = 20
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Figure 12: Solution for K = 30

For K = 0, the stable fixed point occurs at E∗= 0 and I∗= 0, which also has the physical

interpretation that without any external drive, the system approaches a state of zero activity.

With enough drive, there is oscillatory behavior, and a periodic solution arises. However,

when K gets too large, the external drive overpowers the inhibitory input given by the I-

cells, and a large portion of both E-cells and I-cells remain activated. For the E-cells and

the I-cells, a periodic solution for K = 20 looks like the following.
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Figure 13: E(t) and I(t) for K = 20

Note that time is measured in milliseconds. There are about 6 oscillations over 500

milliseconds, which implies that the periodic solution for K = 20 has a frequency of about

12 Hz, called an alpha wave.

2.4 Coupled Wilson-Cowan Oscillators

We are interested in coupling two Wilson-Cowan oscillators, and from a given solution to

the two oscillators, determine the direction of causality between them. The dynamics of

coupled Wilson-Cowan oscillators have been studied extensively, especially the synchro-

nization of a network of Wilson-Cowan neural oscillators [5] [6]. It has been shown that

for certain parameter choices, the coupled Wilson-Cowan oscillator network will produce

phase-locking. Here is an example of a coupled phase-locking Wilson-Cowan oscillator

network:
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Figure 14: Oscillations in a coupled Wilson-Cowan oscillator

The model we will focus on is of the following form:

dE(1)

dt
=

E(1)
∞ −E(1)

5
, (16)

dI(1)

dt
=

I(1)∞ − I(1)

10
, (17)

dE(2)

dt
=

E(2)
∞ −E(2)

5
, (18)

dI(2)

dt
=

I(2)∞ − I(2)

10
. (19)

Here, E(1) and I(1) are one Wilson-Cowan oscillator, and E(2) and I(2) are a second

Wilson-Cowan oscillator. We only couple the E-cells of each Wilson-Cowan oscillator,

which translates to the following equations for the E(i)
∞ and I(i)∞ for i = 1,2.

E(i)
∞ =


(ϕ jE( j)+ c1E(i)− c2I(i)+K)2

9+0.01(ϕ jE( j)+ c1E(i)− c2I(i)+K)2
if c2I(i) ≤ ϕ jE( j)+ c1E(i)+K

0 otherwise
(20)
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where j corresponds to the second Wilson-Cowan oscillator. That is, j = 1 if i = 2, and

j = 2 if i= 1. As before, set c1 = 1.6, c2 = 1, and d1 = 1.5. The coupling terms between the

two Wilson-Cowan oscillators are purely determined by the variables ϕ1 ≥ 0, and ϕ2 ≥ 0,

where ϕ1 is the coupling strength from E(2) to E(1) and ϕ2 is the coupling strength from

E(1) to E(2). The dynamics of I(i)∞ are modeled as before, for i = 1,2,

I(i)∞ =
(d1E(i))2

9+0.01(d1E(i))2
. (21)

The network diagram of the coupled Wilson-Cowan oscillator is as follows

Figure 15: Coupled Wilson-Cowan Oscillator Network Diagram

Coupling the E-cells only is motivated by findings that long-range intracortical connec-

tions (within a specific cortex in the brain) arise almost exclusively from excitatory neurons

[8] [9]. Furthermore, the target cells of these synaptic connections are other excitatory cells

about 80% of the time [10] [11].

We are interested in the following question. Suppose we are given a set of observations

from a coupled Wilson-Cowan oscillator, {E(i)
k , I(i)k }N

k=0, i = 1,2, where E(i)
k = E(i)(∆tk),

I(i)k = I(i)(∆tk). From this set of observations, we want to determine if E(1) influences E(2),

or vice-versa, or both. That is, we want to determine if ϕ1 6= 0, or ϕ2 6= 0, or both. We
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restrict ourselves to parameters which produce a phase-locking solution.

In the case of a single Wilson-Cowan oscillator, the existence and uniqueness theorem

for first-order ODEs implies that different trajectories in the phase-space plane never in-

tersect [7]. The single Wilson-Cowan oscillator has a two-dimensional phase space, the

(E, I)-plane. Thus, if we look at trajectories of a single Wilson-Cowan oscillator in the

(E, I)-plane, those trajectories will never intersect. In the case of two coupled Wilson-

Cowan oscillators, (E(1), I(1)) and (E(2), I(2)), if the coupling terms ϕ1 and ϕ2 are nonzero,

then the overall phase space for both Wilson-Cowan oscillators will be four-dimensional.

Therefore, when plotting the trajectory of the second Wilson-Cowan oscillator in the two-

dimensional (E(2), I(2))-subspace of the four-dimensional phase space, the trajectories may

intersect. If there is an intersection of the trajectory in the (E(2), I(2))-plane, then the

first Wilson Cowan oscillator must have a causal influence on the dynamics of the second

Wilson-Cowan oscillator. Using this observation, we can determine if ϕ1 6= 0 and ϕ2 6= 0,

if you start far enough away from the phase-locked state.

Here is an example of two Wilson-Cowan oscillators for which we are able to detect

causality from E(1) to E(2) due to the cross-over of trajectories in the (E(2), I(2))-plane.
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Figure 16: coupled Wilson-Cowan oscillators
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Figure 17: No Crossover in (E(1), I(1))-plane
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Figure 18: Crossover in (E(2), I(2))-plane

In order to deduce causality from looking at cross-overs in the (E(1), I(1))-plane and

(E(2), I(2))-plane, the system has to start far enough away from the stable limit cycle. Fur-

thermore, we have to view all four dynamic variables, E(1), I(1),E(2), and I(2). What if we

only viewed the excitatory part of each network, E(1) and E(2)? Then, this method does

not work anymore. Another way we can look for causality in the coupled Wilson-Cowan

oscillator model is to estimate the time derivatives of E(1)(t) and E(2)(t), and plot these as

functions of E(1)(t) and E(2)(t). We would assume that if E(1) influences E(2), then the

time derivative of E(2) will fluctuate more over time than if there was no influence. Keep

in mind, this will only happen if the system starts far enough away from the phase-locked

state. Using the previous simulation, we plot the estimated time derivatives of E(1) and

E(2).
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Figure 19: dE(1)/dt vs. E(1)(t).
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Figure 20: dE(2)/dt vs. E(2)(t).
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The plot of time derivatives of E(2) certainly varies more than the plot of time deriva-

tives of E(1). Thus, it also possible to see the influence of E(1) onto E(2) without using any

information about the inhibitory component of the networks. The main assumption that we

are making with this analysis is the following. If the motion starts far enough away from

the stable limit cycle, then if one of the dynamic variables is influencing another, the path or

trajectory of the variable that is being influenced will be more volatile, since we are trying

to project a high-dimensional phase-space into a low-dimensional space. However, these

methods will not work in every case, and are contingent upon the system starting far away

from the stable limit cycle. Due to this fact, it would seem that adding a noisy driving force

to a dynamical system in a phase-locked state may be causality revealing. Although the

noise may drown out some of the dynamics of the system, it will also continuously knock

the dynamical system out of a stable steady state.

In the following sections, we will present how to test for causality in a linear discrete-

time stochastic process using Granger causality techniques. We will also look at how the

presence of a noisy driving force affects our ability to detect causality in phase-locking

oscillators in the final section.
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3 Granger Causality - An Overview

3.1 Multivariate Gaussian Distribution

In order to understand Granger causality and how we can use it in a discrete time Gaussian

process, we will have to review the multivariate Gaussian distribution. A non-degenerate

multivariate Gaussian density on Rn is defined by a probability density function of the

form

f (x) =
1

(2π)n/2|Σ| exp
(
−1

2
(x−µ)T (ΣΣ

T )−1(x−µ)
)
, (22)

where µ is a constant vector in Rn, Σ ∈ Rn×n is invertible, and |Σ| denotes the determinant

of the matrix Σ. If Σ has rank less than n, then the corresponding multivariate Gaussian

does not have a probability density, since Σ is not invertible. For this case, the multivariate

Gaussian random variable is said to be degenerate.

The non-degenerate multivariate Gaussian random variable in Rn is defined by two vari-

ables, µ ∈ Rn and ΣΣT ∈ Rn×n, which are the mean, and the variance-covariance matrix of

the random variable. Thus, the multivariate Gaussian is defined by its first two moments.

We can verify that µ and ΣΣT are the mean and variance-covariance matrix of the multi-

variate Gaussian, but first let’s show that (22) is a probability density function, ie. that it

integrates to 1.

∫
Rn

f (x)dx =
1

(2π)n/2|Σ|

∫
Rn

exp
(
−1

2
(x−µ)T (ΣΣ

T )−1(x−µ)
)

dx

=
1

(2π)n/2|Σ|

∫
Rn

exp
(
−1

2
(Σ−1(x−µ))T (Σ−1(x−µ))

)
dx

Let y = Σ−1(x−µ). Then, dy = |Σ−1|dx = dx/|Σ|, and the integral becomes
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1
(2π)n/2

∫
Rn

exp
(
−1

2
yT y
)

dy =
(2π)n/2

(2π)n/2 = 1.

Next, we show that the mean of a random variable X with density (22) is µ. That is, we

want to show

∫
Rn

(x−µ) f (x)dx = 0.

Let z = x−µ. Then, this integral becomes

1
(2π)n/2|Σ|

∫
Rn

zexp
(
−1

2
(Σ−1z)T (Σ−1z)

)
dz =

1
(2π)n/2|Σ|

∫
Rn

zexp
(
−1

2
‖Σ−1z‖2

2

)
dz

The function exp
(
−1

2‖Σ−1z‖2
2
)

is even, which means the integrand is odd. Since we

are integrating over the entire space Rn, this integral is 0. Finally, we want to show that the

variance-covariance matrix of X is equal to ΣΣT . In order to do this, we have to calculate

the following integral, and show that it equals ΣΣT .

∫
Rn

(x−µ)(x−µ)T f (x)dx =

1
(2π)n/2|Σ|

∫
Rn

(x−µ)(x−µ)T exp
(
−1

2
(x−µ)T (ΣΣ

T )−1(x−µ)
)

dx.

Again, use the change of variables y = Σ−1(x−µ) to get

1
(2π)n/2

∫
Rn

ΣyyT
Σ

T exp
(
−1

2
yT y
)

dy =
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Σ

 1
(2π)n/2

∫
Rn

yyT exp
(
−1

2
yT y
)

dy

Σ
T .

The expression in the brackets is equal to the identity matrix, so this integral is equal

to ΣΣT . So, the random variable with density function (22) has mean µ and variance-

covariance matrix ΣΣT . We can normalize a multivariate Gaussian by doing the following

transformation. If X is an n-dimensional multivariate Gaussian random variable with mean

µ and variance-covariance matrix ΣΣT , then the following linear transformation of X pro-

duces a standard Gaussian vector with mean 0 and variance-covariance matrix I.

Z = Σ
−1(X−µ). (23)

To see what the density of Σ−1(X −µ) is, we calculate the probability that Σ−1(X −µ)

lies in a specific region in Rn. Let R⊂ Rn. Then,

P
(
(Σ−1(X−µ) ∈ R

)
= P(X ∈ ΣR+µ)

=
∫

ΣR+µ

f (x)dx

=
1

(2π)n/2|Σ|

∫
ΣR+µ

exp
(
−1

2
(Σ−1(x−µ))T (Σ−1(x−µ))

)
dx.

Substituting y = Σ−1(x−µ), this integral becomes

1
(2π)n/2

∫
R

exp
(
−1

2
yT y
)

dy.

This integral describes the probability that an n−dimensional multivariate random vari-

able with mean zero and variance-covariance matrix I lies in the region R⊂ Rn. Thus, the
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random variable Z defined by the linear transformation Z = Σ−1(X−µ), has a multivariate

Gaussian distribution with mean zero and variance-covariance matrix I, which implies that

Z is vector of n uncorrelated Gaussians with mean zero and variance 1. This linear trans-

formation also works in the other direction. That is, if Z is a standard Gaussian vector, then

X = µ+ΣZ is multivariate Gaussian with mean µ and variance-covariance matrix ΣΣT .

There are many interesting properties of the multivariate Gaussian random variable.

Here, we will only present how to solve the conditional distribution of a non-degenerate

multivariate Gaussian. In order to do so, we first need to show if two partitions of a mul-

tivariate Gaussian random variable are uncorrelated, then they are also independent. Let

X ∈ Rm and Y ∈ Rn be uncorrelated and multivariate Gaussian, and suppose the joint ran-

dom variable, Z = [X ,Y ]T is also multivariate Gaussian. Suppose X has mean µx and Y

has mean µy, and µz = [µx,µy]
T . If X and Y are uncorrelated, then cov(X ,Y ) = 0 and

cov(Y,X) = 0. So, the variance-covariance matrix of Z will be block diagonal, and will

have the form

ΣΣ
T =

ΣxΣT
x 0

0 ΣyΣT
y

 ,
where ΣxΣT

x ∈ Rm×m is the variance-covariance matrix of X , and ΣyΣT
y ∈ Rn×n is the

variance-covariance matrix of Y . Thus,

|ΣΣ
T |= |ΣxΣ

T
x ||ΣyΣ

T
y | =⇒ |Σ|2 = |Σx|2|Σy|2 =⇒ |Σ|= |Σx||Σy|.

Also, the inverse of ΣΣT is

(
ΣΣ

T)−1
=

(ΣxΣT
x )
−1 0

0 (ΣyΣT
y )
−1

 .
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By definition, since Z is non-degenerate multivariate Gaussian, it will have the follow-

ing probability density function, which we simplify as follows

fZ(z) =
1

(2π)(m+n)/2|Σ| exp
(
−1

2
(z−µz)

T (ΣΣ
T )−1 (z−µz)

)
=

1
(2π)(m+n)/2|Σx||Σy|

exp
(
−1

2
(x−µx)

T (
ΣxΣ

T
x
)−1

(x−µx)×

(y−µy)
T (

ΣyΣ
T
y
)−1

(y−µy)
)

=
1

(2π)m/2|Σx|
exp
(
−1

2
(x−µx)

T (
ΣxΣ

T
x
)−1

(x−µx)

)
×

1
(2π)n/2|Σy|

exp
(
−1

2
(y−µy)

T (
ΣyΣ

T
y
)−1

(y−µy)

)
= fX(x) fY (y).

Thus, the multivariate Gaussian random variables X and Y are independent if they are

uncorrelated and components of a multivariate random Gaussian. Now, we want to solve

for the conditional distribution of a multivariate Gaussian. Let Z = [X1,X2]
T be a multi-

variate random Gaussian with X1 ∈Rm and X2 ∈Rn, where both X1 and X2 are multivariate

Gaussians with means µ1 and µ2. We want to solve for the distribution of the conditional

random variable (X2|X1 = x1). Let ΣΣT be the variance-covariance matrix of Z, and let

ΣΣ
T =

A11 A12

A21 A22

 ,
where A11 ∈ Rm×m is the variance-covariance matrix of X1, A22 ∈ Rn×n is the variance-

covariance matrix of X2, cov(X1,X2) = A12 ∈ Rm×n, and cov(X2,X1) = A21 ∈ Rn×m, such

that A12 = AT
21.

We want to find a linear transformation of Z, which will produce uncorrelated parti-
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ations of Z. Define the following linear transformation of the multivariate Gaussian, Z,

by

L =

 I 0

−A12A−1
11 I

 .
Clearly, L is invertible because it is lower triangular and all diagonal entries are non-

zero. Thus, LZ will be a multivariate Gaussian. When we multiply Z by L, we get

LZ =

 I 0

−A12A−1
11 I


X1

X2

=

 X1

−A12A−1
11 X1 +X2

 .
Define Y = X2−A21A−1

11 X1, the second partition of LZ. Since Y is a sub-vector of a

multivariate Gaussian, it is also Gaussian. Solving for the covariance between Y and X1,

we find:

cov(Y,X1) = cov(X2−A21A−1
11 X1,X1)

= cov(X2,X1)− cov(A21A−1
11 X1,X1)

= A21−A21A−1
11 cov(X1,X1)

= A21−A21A−1
11 A11

= A21−A21

= 0.

Thus, Y and X1 are uncorrelated components of a multivariate Gaussian, and hence

independent! Now, assume X1 is given, that is X1 = x1, and we want to solve for the distri-

bution of the conditional random variable (X2|X1 = x1). First, we solve for the expectation,

and using the fact that Y is independent of X1, we get:
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E(X2|X1 = x1) = E
(

Y +A21A−1
11 X1|X1

)
= E(Y |X1)+E

(
A21A−1

11 X1|X1

)
= E(Y )+A21A−1

11 x1

= E
(

X2−A21A−1
11 X1

)
+A21A−1

11 x1

= E(X2)−A21A−1
11 E(X1)+A21A−1

11 x1

= µ2−A21A−1
11 µ1 +A21A−1

11 x1

= µ2 +A21A−1
11 (x1−µ1).

Solving for the variance of (X2|X1 = x1), we get:

var(X2|X1 = x1) = var
(

Y +A21A−1
11 X1|X1

)
= var(Y |X1)+var(A21A−1

11 X1|X1)+ cov(Y |X1,A21A−1
11 X1|X1)

+ cov(A21A−1
11 X1|X1,Y |X1)

= var(Y )+
���

���
��

var(A21A−1
11 x1)+((((

((((
(

cov(Y,A21A−1
11 x1)+((((

((((
(

cov(A21A−1
11 x1,Y )

= var(X2−A21A−1
11 X1)

= var(X2)+var(A21A−1
11 X1)− cov(X2,A21A−1

11 X1)− cov(A21A−1
11 X1,X2)

= A22 +A21A−1
11 var(X1)

(
A21A−1

11

)T
− cov(X2,X1)

(
A21A−1

11

)T

−
(

A21A−1
11

)
cov(X1,X2)

= A22 +A21A−1
11 A11A−1

11 A12−A21A−1
11 A12−A21A−1

11 A12

= A22 +A21A−1
11 A12−2A21A−1

11 A12

= A22−A21A−1
11 A12.
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Note, in this derivation we have used the fact that the inverse of a symmetric positive

definite matrix is symmetric positive definite, that is, since A11 is symmetric positive defi-

nite, so is A−1
11 . So, now we have the conditional mean and variance covariance matrix of

the random variable (X2|X1 = x1). Furthermore, (X2|X1 = x1) will be multivariate Gaus-

sian. To show this, we would need to calculate the conditional density of (X2|X1 = x1)

which is defined as

fX2|X1(x2|x1) =
fZ(z)

fX1(x1)
,

since fZ(z) is the joint probability density of function of [X1,X2]
T . It is possible to do

this, and the pdf will precisely follow a multivariate Gaussian with mean and variance-

covariance matrix we solved for above [12].

Consider the case of a multivariate Gaussian random variable where n = 2. This case

is known as a bivariate Gaussian. For this case, we let

X =

X

Y

 .
The pdf of the bivariate Gaussian, f (x,y), is defined as

1

2πσxσy
√

1−ρ2
exp

(
− 1

2(1−ρ2)

[
(x−µx)

2

σ2
x

+
(y−µy)

2

σ2
y
− 2ρ(x−µx)(y−µy)

σxσy

])
(24)

with σx,σy > 0. The mean, µ, and variance-covariance matrix, ΣΣT , are defined as

µ =

µx

µy

 , ΣΣ
T =

 σ2
x ρσxσy

ρσxσy σ2
y

 . (25)
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The correlation between X and Y is the quantity ρ.

ρ =
cov(X ,Y )

σxσy
. (26)

Note that −1 ≤ ρ ≤ 1. Here are some examples of the bivariate pdf and contour plot

with various values of ρ.
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Figure 21: Bivariate Gaussian, ρ = 0.
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Figure 22: Bivariate Gaussian, ρ = 0.
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Figure 23: Bivariate Gaussian, ρ = 0.9.
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Figure 24: Bivariate Gaussian, ρ = 0.9.
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Figure 25: Bivariate Gaussian, ρ =−0.9.
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Figure 26: Bivariate Gaussian, ρ =−0.9.

Notice that the pdf gets stretched out as ρ deviates from zero. This is because as ρ

increases in magnitude towards 1, the variance-covariance matrix gets closer to being sin-

gular. When |ρ| = 1, the variance-covariance matrix is singular, and the corresponding

bivariate Gaussian is degenerate.

3.2 Granger Causality – Two Equivalent Statistical Tests

Let C ∈ R2×2 with spectral radius ρ(C) < 1, and σ > 0. Consider a random sequence,

{xk}k=0,1,2,... of vectors in R2 satisfying the recursion

xk+1 =Cxk +σ

Gk+1

Hk+1

 ,k = 0,1,2, . . . (27)

where Gk+1 and Hk+1 are standard Gaussians, independent of each other, and independent

of G j and H j for j < k+1. We also write

x =

x

y

 .
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Thus, x ∈ R (not bold) is the first component of x ∈ R2 (bold). The condition ρ(C)< 1

ensures that limk→∞ xk would be 0 if σ were zero. In other words, what we are considering

is the simplest kind of deterministic dynamics, with convergence to a stable fixed point,

perturbed by a white noise process. This process is known as an autoregressive process

of order 1, or AR(1) process. Furthermore, the condition that ρ(C) < 1 ensures that the

process will have an invariant distribution, which we can solve for as follows. Taking

expectations of both sides of equation (27).

E(xk+1) = E

Cxk +σ

Gk+1

Hk+1


=CE(xk).

Setting E(xk+1) = E(xk) = µ, we get

µ =Cµ,

for which the only solution is the zero vector. Next, we can take variance of both sides of

equation (27), and setting Var(xk) = Var(xk+1) = VV T , we get the following relation for

VV T ,

VV T =CVV TCT +σ
2I.

This type of equation is known as the discrete Lyapunov equation, and will have a

unique symmetric positive definite solution, VV T , iff ρ(C)< 1 [13]. Since we are assuming

ρ(C) < 1, there exists a unique symmetric positive definite matrix V , which satisfies this

equation. Furthermore, the invariant distribution will be multivariate Gaussian.

The following image shows an example of the process defined in (27).
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Figure 27: The two components, {xk} and {yk}, of {xk}N
k=1 satisfying (27)

This set of observations was produced by the model with coefficient matrix

C =

0.30 −0.10

0.20 0.40

 .
Note: This matrix has spectral radius < 1 by Gerschgorin’s theorem. Our question now

is if we are only given the set of observations in Figure 27, can we tell whether the right

upper entry in C is zero or non-zero. Writing

C =

a b

c d

 ,
our question is whether b = 0 or b 6= 0. In other words, our question is whether in the

deterministic dynamics, y influences (is causal for) x. Similarly, we want to ask if x is

causal for y by ascertaining if c = 0 or c 6= 0. That is we set up the following hypothesis

test to test if y “Granger” causes x,

H0 : b = 0, HA : b 6= 0.
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To test if x Granger causes y, we set up the following hypothesis test,

H0 : c = 0, HA : c 6= 0.

We can test these two hypotheses using methods from multiple linear regression anal-

ysis. In order to do this, we will need to present some of the concepts used in regression

analysis from probability and statistics, however, we will mainly present an overview of

the theory without going into the minute details.

There are two equivalent statistical tests for testing if b = 0. Both of the tests involve

comparing a “base” model to a “full” model. For this example, we assume that x is depen-

dent on its own immediate past, and we want to test if x is also dependent on the immediate

past of y. Under the null hypothesis, b = 0. Therefore, working under the null hypothesis,

xk+1 = axk +σGk+1. (28)

This will be our “base” model. Here, we are assuming that x is only dependent on

its own past. Furthermore, under the assumptions of the null hypothesis, the noise terms

of the base model will be independent, identically distributed Gaussian random variables

with mean zero and variance σ2. Also, they will be independent of x j for j < k. It will be

convenient to form the following vectors,

Y =



xN

xN−1

...

x2


, X =



xN−1

xN−2

...

x1


, Z =



yN−1

yN−2

...

y1


.

We can use the set of observations {xk}N
k=1 to estimate a using the Least Squares method,

from which we get the following estimator for a:
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â = argmin
a
‖Y −Xa‖2

2 = (XT X)−1XTY =

N−1

∑
k=1

xk+1xk

N−1

∑
k=1

x2
k

. (29)

Now, we form a vector of residuals or errors, which we call eb, the subscript b identify-

ing that these errors are formed from the base model, which is eb =Y −Xâ. Under the null

hypothesis, this estimator for a will be unbiased. Furthermore, under the null hypothesis,

the residuals will be independent, identically distributed normal random variables. Just to

test this, we plot the residuals of the base model, ek = xk− âxk−1 vs. k to get the following

residual plot and histogram plot of the residuals. There are statistical tests to determine

if the residuals are independent, identically distributed Gaussians, but we will only use

heuristics here.
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Figure 28: Plot of Residuals
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Figure 29: Histogram of Residuals

Under the null hypothesis, the noise terms, σGk’s, are assumed to be independent and

identically distributed Gaussians. Therefore, the sum of squared residuals in the base

model, ‖eb‖2
2, will be the sum of N − 1 squared independent and identically distributed

Gaussians. This type of random variable is a χ2 random variable and follows a χ2 distribu-

tion with N−2 degrees of freedom. The N−2 degrees of freedom comes from the fact that

we are using a total of N− 1 quantities to estimate the one parameter a. Furthermore, we

note that since we are using the Least Squares method to estimate a, it is guaranteed that
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the vector of residuals from the base model, eb, is orthogonal to the vector Y . It is fairly

straightforward to show this:

〈Y,eb〉= 〈Y,Y −Xâ〉

= 〈Y,Y −X((XT X)−1XTY )〉

= Y TY −Y T X(XT X)−1XTY

= Y TY − (XT X)−1XTY XTY

= Y TY − (XT X)−1XT XY TY

= Y TY −Y TY

= 0.

Note, we were allowed to do the above calculation in this way because X and Y are in

RN−1×1. The next step in this hypothesis test is to form the “full” model, defined by the

following equation

xk+1 = axk +byk +σGk+1.

Note that the noise terms in the full model are not necessarily the the same as the error

terms in the reduced model. Now, we fix a to be â, since we assumed it was part of the base

model, and we estimate b using the Least Squares method to get the following estimator

for b:

b̂ = argmin
b
‖Y −Xâ−Zb‖2

2 = (ZT Z)−1(ZTY −ZT Xâ)) =

N−1

∑
k=1

(xk+1yk− â1xkyk)

N−1

∑
k=1

y2
k

. (30)
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Another requirement to continue the hypothesis test is that the errors in the full regres-

sion model are independent, identically distributed Gaussians. Again, we use the heuristic

of plotting the residuals and the histogram plot of the residuals of the full model to get the

following plots.
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Figure 30: Plot of Residuals

−4 −2 0 2 4
0

0.1

0.2

0.3

0.4

0.5

ek
D
en

si
ty

Student Version of MATLAB

Figure 31: Histogram of Residuals

Now, we can define the vector of residuals from the full model by e f = Y − âX − b̂Z.

Note e f = eb− b̂Z. Again, under the null hypothesis that b = 0, the square of the 2-norm of

this vector, ‖e f ‖2
2, will then be the sum of N−1 squared identically distributed Gaussians,

so it will be a χ2 random variable, this time with N−3 degrees of freedom. Furthermore,

since we are using the Least Squares Estimator to estimate b, the vector of residuals, e f

will be orthogonal to the vector Z.

We are almost ready to form the test statistic, which involves an F-ratio. A random

variable has an F-distribution with parameters d1 and d2 if one can write it as the ratio

of two appropriately scaled independent χ2 random variables. That is, if U1 and U2 have

χ2 distributions with d1 and d2 degrees of freedom respectively, then the random variable

F = U1/d1
U2/d2

has an F-distribution.

Under the null hypothesis, eb and e f are random vectors, which contain independent

and identically distributed Gaussian random variables (we verified this heuristically by

observing the residual plots and confirming they were normal). Also, the square of the
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2-norm of both eb and e f have χ2 distributions. Thus, their ratio will have an F-distribution

under the null hypothesis, since they are independent random variables.

The F-statistic uses the following test statistic, which compares the variance of the error

terms in the base model to the variance of the error terms in the full model in the following

way,

F =
‖eb− e f ‖2

2/1
‖e f ‖2

2/(N−3)
∼ F1,N−3. (31)

This F-test looks at the marginal effect that Z has on the regressive model, or in other

words the marginal effect of including the yk’s in the regressive model for xk+1. One way

to understand this quantity is to break it down using what we know about the error terms

eb and e f . One way we can do this is to simplify ‖eb−e f ‖2
2 in the following way, by using

the orthogonality relations from the Least Squares estimate.

‖eb− e f ‖2
2 = 〈eb− e f ,eb− e f 〉

= 〈eb,eb〉−2〈eb,e f 〉+ 〈e f ,e f 〉

= ‖eb‖2
2−2〈Y − âX ,Y − âX− b̂Z〉+‖e f ‖2

2

= ‖eb‖2
2−2〈b̂Z + e f ,e f 〉+‖e f ‖2

2

= ‖eb‖2
2−����

�2b̂〈Z,e f 〉−2〈e f ,e f 〉+‖e f ‖2
2

= ‖eb‖2
2−‖e f ‖2

2.

Therefore, we can re-write the F-statistic in (31) as

F =
‖eb‖2

2−‖e f ‖2
2

‖e f ‖2
2|/(N−3)

= (N−3)
(‖eb‖2

2

‖e f ‖2
2
−1
)
.
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Furthermore, we know that ‖eb‖2
2 ≥ ‖e f ‖2

2, since

‖e f ‖2
2 = 〈e f ,e f 〉

= 〈eb− b̂Z,eb− b̂Z〉

= ‖eb‖2
2−2〈eb, b̂Z〉+ b̂2‖Z‖2

2

= ‖eb‖2
2−2〈e f + b̂Z, b̂Z〉+ b̂2‖Z‖2

2

= ‖eb‖2
2−����

�2〈e f , b̂Z〉−2b̂2〈Z,Z〉+ b̂2‖Z‖2
2

= ‖eb‖2
2− b̂2‖Z‖2

2.

Thus, ‖eb‖2
2 ≥ ‖e f ‖2

2, where equality holds iff b̂ = 0, which implies F ≥ 0. Therefore,

our test-statistic will always be positive. In fact, under the null hypothesis, E(b̂) = 0, so

we expect that if y does not influence x, then this F-ratio should be close to zero. However,

if the null hypothesis is wrong, and y does influence x, then including yk in the regressive

model should give us a better prediction for xk+1, meaning ‖e f ‖2
2 will be smaller than ‖eb‖2

2.

Also, we note that ‖eb‖2
2 is a scaled estimate for the variance of the residual terms in the

base model, and ‖e f ‖2
2 is a scaled estimate for the variance of the residual terms in the full

model. Therefore, we are simply comparing how much the variances of these two sets of

residuals differ from each other with this statistic. Note, we can also re-write the F-statistic

using the above relation as:

F =
‖eb‖2

2−‖e f ‖2
2

‖e f ‖2
2|/(N−3)

=
b̂2‖Z‖2

2

‖e f ‖2
2|/(N−3)

.

There is an equivalent test statistic used to test the same null hypothesis stated above.

This test involves comparing the estimate for b, b̂, to zero. The way to do this is by a t-test,

and the statistic used is tscore, defined as
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tscore =
b̂

SEb̂
∼ TN−3, (32)

where SEb̂ is the standard error of b̂, and the tscore has a Student’s t-distribution with

N−3 degrees of freedom. The standard error is defined as

SEb̂ =

√
Var(b̂).

We need to estimate the standard error using the given data. To do this, we use the

assumptions made in the null hypothesis. We assume that b = 0, and Y = Xa+ ε, where ε

is a N− 1× 1 vector of independent, identically distributed Gaussians. Then, under these

assumptions, our estimator b̂ will be unbiased! To see this, we calculate its expected value

E(b̂) = E
(
(ZT Z)−1(ZTY −ZT Xa)

)
= E

(
(ZT Z)−1ZT (Y −Xa)

)
= E

(
(ZT Z)−1ZT

ε
)

= (ZT Z)−1E(ZT
ε)

= 0.

We were able to pull out the term (ZT Z)−1 in the second-to-last line because they can

be considered as non-random weights, depending only on the given values of the yk’s,

independent of the noise terms, σGk. Now, still working under the null hypothesis, we can

estimate the variance of b̂ as follows, using the fact that E(b̂) = 0,
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Var(b̂) = E
(
(b̂−E(b̂))(b̂−E(b̂))T)

= E
(
b̂b̂T)

= E
(
((ZT Z)−1ZT

ε)((ZT Z)−1ZT
ε)T)

= E
(
(ZT Z)−1ZT

εε
T Z(ZT Z)−1)

= (ZT Z)−1ZT E
(
εε

T)Z(ZT Z)−1

= σ
2(ZT Z)−1ZT Z(ZT Z)−1

= σ
2(ZT Z)−1

=
σ2

‖Z‖2
2

Since we do not know what σ2 is, we have to use the estimator which we get from

taking the 2-norm of the residuals from the full model, and dividing by N−3,

σ̂
2 =

1
N−3

‖e f ‖2
2.

Therefore, the value we get for the tscore is

tscore =
b̂√

Var(b̂)
=

b̂√
1

N−3‖e f ‖2
2

‖Z‖2
2

=
‖Z‖2b̂

‖e f ‖/
√

N−3
.

This tscore is precisely the square root of the F-statistic which we calculated previously.

That is, tscore =
√

F . Furthermore, the F-distribution with degrees of freedom 1 and degrees

of freedom N− 3 shares exactly the same distribution as the Student’s t-distribution with

degrees of freedom N− 3. Thus, whenever we reject the null hypothesis that b = 0 using

the F-statistic, we will get exactly the same result as using the t-statistic. This proves an

interesting point, namely, that in Granger causality, we can either compare the variance
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of the residuals in the full vs. the reduced model to see if one variable Granger causes

another, or we can compare the estimated coefficient to zero. However, we have used

the assumptions here that xk+1 can only depend linearly on xk and yk, and that the noise

terms are independent, identically distributed Gaussians. If there are non-linear dynamics

or non-Gaussian noise, then this analysis will not be applicable.

When using the above procedure to determine if xk influences yk and vice-versa at the

α = 0.05-significance level in 1000 simulations, each simulation using 100 data points of

the original problem where

C =

0.30 −0.10

0.20 0.40

 ,
we are correct in establishing causality from y to x in 21.0% of simulations, and we are

correct in establishing causality from x to y in 53.6% of simulations. Why such a discrep-

ancy? Part of the reason is that b is closer to zero than c, and our N is too small in each

simulation. Letting N = 500 in each simulation, we are able to detect causality from y to x

in 69.9% of simulations, and we are correct in establishing causality from y to x in 99.4%

of cases. When N = 1000, we are correct in establishing causality from y to x in 92.6% of

cases, and we are correct in establishing causality from y to x in 100% of cases. So, when

the linear causal effect of one variable on another is greater, we have a better chance of

detecting that relationship in Granger analysis. Furthermore, when we have a larger set of

observations, then our accuracy increases as well.

Now, suppose we have rejected the null hypothesis that b = 0 and we have rejected

the null hypothesis that c = 0 using the above statistical tests. Then, our estimates a, b, c,

and d will be biased, since we were working under the assumption of the null hypothesis,

that b = 0 and c = 0, when estimating these quantities. So, we need a way to estimate the

coefficient matrix which will produce an unbiased estimator for the coefficient matrix. We
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can do this using the Yule-Walker equations or the Multivariate Least-Squares estimation

technique, which we present in the following sections.

3.3 Coefficient Estimation using Yule-Walker equation

One method for estimating the entries of C from (27) uses the Yule-Walker equations, which

we describe as follows. Multiply both sides of equation (27) by xT
k and take expectations

of both sides of the equation to get

E
(
xk+1xT

k
)
= E

(
CxkxT

k +Gk+1xT
k
)

=CE
(
xkxT

k
)
+���

���E
(
Gk+1xT

k
)

=CE
(
xkxT

k
)

We were able to drop the term E
(
Gk+1xT

k

)
in the above calculation since Gk+1 and

Hk+1 are independent of xk, and both have mean zero. The resulting equation,

E
(
xk+1xT

k
)
=CE

(
xkxT

k
)

(33)

is called the Yule-Walker equation. Here, note that E
(
xkxT

k

)
is the variance-covariance

matrix of xk. The variance-covariance matrix of two random variables is symmetric semi-

positive definite and never singular, unless one random variable is a constant multiple of the

other, or one of the random variables is a constant. Therefore, we can solve the Yule-Walker

equation for C from Equation (33) to get

C = E
(
xk+1xT

k
)(

E
(
xkxT

k
))−1

. (34)
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There is a natural way of using (34) to estimate C. First, average the products xk+1xT
k

from the computed realization of (27). This will give an estimate of E(xk+1xT
k ). Then,

average xkxT
k , which gives an estimate of E(xkxT

k ). Finally solve for the inverse of the

estimate for E(xkxT
k ), and multiply the inverse to the left of our estimate for E(xk+1xT

k ) to

get an estimate of C. The matrix from the above example was

C =

0.30 −0.10

0.20 0.40

 .
Using the 100 data points shown in Figure 27, we get the following estimate for C using

the Yule-Walker estimate:

Ĉ =

 .37 −0.05

0.22 0.27

 .
Note that this is not a very good estimate of the actual coefficient matrix. This is due

to effect of two small a segment of the sequence {xk}. We only used 100 data points in

the estimate. If we let the simulation run for 10,000 data points, then we get the following

estimate:

Ĉ =

0.32 −0.11

0.19 0.40

 .
We can also solve for the variance-covariance matrix of the white noise process Gk,

which is σ2I, by multiplying (27) on the right side of the equation by xT
k+1 and taking

expectations to get
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E
(
xk+1xT

k+1
)
=CE

(
xkxT

k+1
)
+σE

(
Gk+1xT

k+1
)

E
(
xk+1xT

k+1
)
=CE

(
xkxT

k+1
)
+σE

(
Gk+1 (Cxk +σGk+1)

T
)

E
(
xk+1xT

k+1
)
=CE

(
xkxT

k+1
)
+σ

2E
(
Gk+1GT

k+1
)
+((((

((((
(

σ
2E
(
Gk+1xT

k
)

CT

σ
2I = E

(
xk+1xT

k+1
)
−CE

(
xkxT

k+1
)

(35)

This provides a method to estimate the variance-covariance matrix of the noise pro-

cess from a given set of observations by replacing C, E
(
xkxT

k

)
, and E

(
xk+1xT

k

)
by their

respective estimates in the above equation.

3.4 Coefficient Estimation using Least Squares

We begin with the same system as described in the previous section, and consider a given

set of observations from this process, {xk}N
k=1. Now, define the following matrices:

A=

xN xN−1 . . . x2

yN yN−1 . . . y2

 , B=

xN−1 xN−2 . . . x1

yN−1 yN−2 . . . y1

 , D=σ

GN GN−1 . . . G2

HN HN−1 . . . H2

 .

Then, we can then write

A =CB+D.

Multiplying both sides of this equation by BT , we get

ABT =CBBT +DBT .

47



Taking expectations of both sides of this equation, and using the fact that Gk and Hk

have mean zero and are uncorrelated with x j and y j for j < k, we find

E(ABT ) =CE(BBT ) =⇒ C = E(ABT )E(BBT )−1.

Finally, we can replace E(ABT ) and E(BBT )−1 by their estimates using the set of ob-

servations to get

Ĉ =
1

N−1
ABT

(
1

N−1
BBT

)−1

Ĉ = ABT (BBT )−1. (36)

We can also solve for the variance covariance matrix of the white-noise process us-

ing the Least Squares estimation technique by re-writing (27) as Gk+1 = xk+1−Cxk, and

solving for the variance of both sides of the equation. Replacing these quantities by their

estimates, we find that the least squares estimate for the variance-covariance matrix of the

white noise process is

σ
2I ≈ 1

N−2
(A−ĈB)(A−ĈB)T . (37)

Using the least squares estimation technique to estimate C from the set of observations

from the previous section, with N = 100, we get

Ĉ =

0.37 −0.05

0.22 0.27


When N = 10,000, we get
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Ĉ =

0.32 −0.11

0.19 0.40


These estimates are extremely close to the Yule-Walker estimates. In fact, the Yule-

Walker estimate and Least Squares estimate for C share the same normal asymptotic dis-

tribution [14]. If we define vec(C) to be the vector formed by placing the columns of the

matrix Ĉ on top of each other. That is,

vec(C) = vec


a b

c d


=



a

c

b

d


.

Then, the asymptotic distribution of the estimates for Ĉ is

√
Nvec

(
Ĉ−C

) d−→
N→∞

N
(
0,E(xkxT

k )
−1⊗Σ

)
where Σ = σ2I, where I ∈ R2×2 is the identity matrix, is the variance-covariance matrix

of the noise vector σ [Gk,Hk]
T , and the ⊗ denotes the Kronecker product of the matrices

E(xkxT
k )
−1 and σ2I. Using the asymptotic normal distributions of the estimates of the

matrix C, we can also form a hypothesis test to determine if b = 0 or c = 0, using a t-score.

This hypothesis test is asymptotically equivalent to the tests described above, however, for

small N, these tests will not always agree.
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4 Adding Noise to Continuous-Time Deterministic Dynam-

ics

There are generally speaking two types of noise that can be added to a dynamical model.

When taking measurements of a dynamical system, noise may be added to these measure-

ments based on intrinsic properties of the measuring device. This type of noise will not

influence the dynamics of the system, but will have a blurring effect on the data collected.

This type of noise is known as observational noise. The other type of noise is known as

dynamical noise, in which unmeasured variables may have an overall random effect on the

dynamics of a variable of interest, thereby changing the properties of the underlying dy-

namics of the system. An example of this noise which occurs in neuroscience is a pyramidal

cell receiving synaptic inputs from thousands of other cells. The large number of synaptic

inputs may seem to have an overall random effect (ie. noise) on the behavior of the pyrami-

dal cell. Other types of dynamical noise in neuroscience include conductance fluctuations

of ion channels in the cell membrane (intrinsic) and fluctuations in ionic concentrations in

the extracellular water (extrinsic) [15]. These examples illustrate a very important point,

that knowledge of the basic physical properties governing a dynamical system are needed

in order to model noise accurately.

Typically, an additive noisy driving force in a physical model should reflect some un-

derlying physical process occurring. One of the difficulties in modeling noise, and adding

it to a deterministic process, is that we are often not able to measure the noise directly

in the physical process. However, we can add different types of stochastic processes to a

deterministic model, and understand how the presence of these stochastic processes affect

the dynamics of the system we are studying.
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4.1 The Ornstein-Uhlenbeck process

One of the simplest types of continuous-time stochastic processes is the Wiener process.

A Wiener process, also known as Brownian motion, {Wt}t≥0, is defined by the following

three properties:

1. W0 = 0

2. Wt has independent increments with Wt −Ws distributed normally with mean zero

and variance t− s for 0≤ s < t

3. The random path, t 7→Wt is almost surely continuous and almost surely nowhere

differentiable, that is, continuous and nowhere differentiable with probability 1

Here are some examples of a Wiener process with 95% confidence interval bounds.
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Figure 32: Wiener Process with 95% confidence interval bounds

The probability density function of a Gaussian random variable, X , with mean µ and

variance σ2, where σ > 0, is defined as

fX(x) =
1√
2πσ

exp
(
−(x−µ)2

2σ2

)
. (38)

At a fixed point in time, t > 0, the Wiener process is normally distributed with mean

0 and variance t, since Wt −W0 = Wt is distributed normally with mean 0 and variance
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t− 0 = t, by definition of the Wiener process. Thus, the probability density function at a

fixed time t of a Wiener process is

fWt (w) =
1√
2πt

exp
(
−w2

2t

)
. (39)

Furthermore, we can use the property that a Wiener process has independent increments

to calculate its covariance. Let 0 < s < t. Then,

Cov(Wt ,Ws) = E [(Wt−E(Wt))(Ws−E(Ws))]

= E [WtWs]

= E [((Wt−Ws)+(Ws−W0))(Ws−0)]

=
((((

(((
((((E [(Wt−Ws)(Ws−0)]+E [(Ws−0)(Ws−0)]

= Var(Ws)

= s.

The cancellation in the calculation is due to the fact that Wt −Ws and Ws −W0 are

independent increments of the Wiener process, which implies E [(Wt−Ws)(Ws−0)] =

E[Wt−Ws]E [Ws] = 0.

Note that the variance of the Wiener process grows as time increases, and although

the expected value of the Wiener process is always zero, the Wiener process wanders far

away from its expected value of zero as time progresses, and in fact the Wiener process can

be thought of as the scaling limit of a random walk. A type of mean-reverting stochastic

process, in which the process tends to drift towards its long-term mean is the Ornstein-

Uhlenbeck process, which is defined by the following stochastic differential equation.

dX =−ρ(X−µ)dt +σdW, (40)
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where ρ > 0, σ > 0, and W denotes the Wiener process. ρ represents the rate at which the

Ornstein-Uhlenbeck process reverts towards its mean, µ is the long-term mean of the pro-

cess, and σ2 is the variance of the Wiener process. Note that if ρ = 0, then X is simply the

Wiener process with a variance of σ2. Note that this equation is given in differential form,

since the Wiener process, Wt , is continuous but not differentiable. To solve the Ornstein-

Uhlenbeck process numerically, we can discretize the system according to Euler’s method

as follows

Xk−Xk−1 =−ρ(Xk−1−µ)∆t +σ(Wk−Wk−1)

Xk = (1−ρ∆t)Xk−1 +ρµ∆t +σ
√

∆tGk, k = 1,2,3, . . . (41)

where {Gk}k∈Z represents an independent sequence of normally distributed random vari-

ables with mean zero and variance 1. In this context, Euler’s method is also called the

Euler-Maruyama method. Note: If we set ∆t = 1 and µ = 0, then this equation is pre-

cisely the same equation for the univariate discrete-time stochastic process which Granger

analyzed! So, what Granger really studied was how to measure causality between two

discretized Ornstein-Uhlenbeck processes. The invariant distribution of the discretized

Ornstein-Uhlenbeck process will be Gaussian due to the Gaussian noise. We can solve

for the invariant distribution by solving for the mean and variance of Xk as follows.

E(Xk) = (1−ρ∆t)E(Xk)+ρµ∆t =⇒ E(Xk) = µ.

Var(Xk) = (1−ρ∆t)2Var(Xk)+σ
2
∆t =⇒ Var(Xk) =

σ2

2ρ−ρ2∆t
.
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In the limit as ∆t→ 0, we see that the variance of the invariant distribution approaches

σ2

2ρ
. The invariant distribution of the Ornstein-Uhlenbeck process itself has a Gaussian dis-

tribution with mean µ and variance σ2

2ρ
. Here is a sample solution of the Ornstein-Uhlenbeck

process using the Euler-Maruyama method with time step ∆t = 0.01, and parameters ρ = 1,

µ = 0, and σ = 1.
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Figure 33: Solution to Ornstein-Uhlenbeck process

As one can see, the process drifts about its mean, but is always pushed back towards

its mean. As is the case for the Wiener process, the Ornstein-Uhlenbeck process is almost

surely continuous, and almost surely nowhere differentiable.

Using Itō calculus, the Ornstein-Uhlenbeck process can be represented as

X(t) = X0−ρ

t∫
0

(Xs−µ)ds+σ

t∫
0

dWs.

The final solution to this equation which uses Itō calculus will be

X(t) = X0e−ρt +µ(1− e−ρt)+

t∫
0

σeρ(s−t)dWs,

where the integral with respect to the Wiener process is an Itō integral, defined as the

left-sided Riemann integral of σeρ(s−t) with respect to the Wiener measure,

t∫
0

σeρ(s−t)dWs = lim
∆t→0

N

∑
i=1

σeρ(ti−1−t)
∆Wi,
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where ∆Wi = Wti −Wti−1 is a step of the Wiener process across the interval [ti−1, ti], and

0 = t0 < t1 < · · · < tN−1 < tN = t. The Euler-Maruyama discretization of the Ornstein-

Uhlenbeck process evaluated at time t is in fact equivalent to this solution as ∆t → 0. To

see this, recall from Equation (41) that the Euler-Maruyama discretization of the Ornstein-

Uhlenbeck process is

Xk = (1−ρ∆t)Xk−1 +ρµ∆t +σ
√

∆tGk, k = 1,2,3, . . .

Assuming X(0) = X0 is given, we can write Xk in terms of X0 as follows

Xk = (1−ρ∆t)kX0 +µ
k−1

∑
j=0

(1−ρ∆t) j
ρ∆t +σ

√
∆t

k

∑
j=1

(1−ρ∆t)k− jG j.

We want to evaluate this discretization at time t, where t = k∆t. Thus, we can replace

∆t in the above equation by t/k to get

X(t) =
(

1− ρt
k

)k
X0 +µ

k−1

∑
j=0

(
1− ρt

k

) j ρt
k
+σ

k

∑
j=1

√
t
k

(
1− ρt

k

)k− j
G j. (42)

If we take the limit of the solution in (42) as k→ ∞ (Note: This is in effect taking the

limit as ∆t→ 0), then the first term in (42) becomes

lim
k→∞

(
1− ρt

k

)k
X0 = X0e−ρt .

This matches the first term in the Itō integral solution. Furthermore, as k → ∞, the

second term in (42) becomes

lim
k→∞

µ
k−1

∑
j=0

(
1− ρt

k

) j ρt
k
= µ lim

k→∞

(
1−
(
1− ρt

k

)k

1−
(
1− ρt

k

) ) ρt
k
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= µ lim
k→∞

(
1−
(

1− ρt
k

)k
)
= µ(1− e−ρt).

This is precisely the second term in the Itō integral solution. Finally, the last term

in (42) is by definition a discretization of the Itō integral. Thus, in the limit as ∆t →

0, the Euler-Maruyama method is equivalent to the Itō integral solution of the Ornstein-

Uhlenbeck process.

4.2 Continuous Linear System Driven by Ornstein-Uhlenbeck Noise

Suppose we have a one-dimensional linear system described by the following equation,

dx
dt

=−ax

where a ≥ 0. Let’s assume we are given a single solution to this system and we want to

determine if a > 0 or a = 0. In other words, we want to determine if x self-influences

or not. Assuming a > 0, and x(0) = 0, the solution to this system will be zero for all

time. That is, if the system starts at its stable fixed point, then we cannot determine if it

self-influences. Now, let’s add a noisy driving force to the system in the form of a mean

zero Ornstein-Uhlenbeck process with ρ = 1, call it ω(t), to get the following system of

equations

dx
dt

=−ax+ω (43)

dω =−ωdt +σdW (44)

where W is a Wiener process. Here is a sample solution to this system with x(0) = 0,

ω(0) = 0, a = 1, σ = 1, calculated using a time step of ∆t = 0.001.
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Figure 34: Sample Solution to x(t) and ω(t)

Note that the process x(t) will be almost surely differentiable, since ω is almost surely

continuous.

Assume we are given a set of observations of x only, {xk}N
k=0, where xk = x(∆tk), and

from these observations, we want to determine if x self-influences, that is, if a 6= 0. A

natural way to solve this process would be to fix a value, α, and look at times when x = α.

This will be a sequence of times. We can estimate dx
dt at those times, and afterwards, take

the average of the estimated quantity dx
dt at all points in time in that sequence. Let’s call this

estimate ĉ. This equates to estimating the following expectation:

E
(

dx
dt

∣∣∣∣ x = α

)
.

One would naturally presume that for α > 0, when x(t) cross the point α, it will be driven

back towards 0 by the deterministic dynamics in such a way that on the average, it will

overpower the random influences of the Ornstein-Uhlenbeck process. However, this is not

the case. It is easy to make the mistake of replacing dx
dt with −ax+ω in the above equation

to get
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E
(

dx
dt

∣∣∣∣ x = α

)
= E

(
−ax+ω

∣∣∣∣ x = α

)
=−aα

However, this is wrong! From the above example in Figure 34, which shows a segment

of a solution to this system from time t = 0 to t = 100, (the full simulation was calculated

from time t = 0 to t = 500), for α = 0.1, our estimate for E
(

dx
dt

∣∣∣∣ x = 0.1
)

is ĉ = 0.0013.

Dividing this number by−α =−0.1 gives -0.013. This is not even close to the actual value

of a, which is a = 1. So, what went wrong? The fallacy lies in the fact that conditioning

dx
dt on x = α is in fact not independent of the Ornstein-Uhlenbeck process, even though

the Ornstein-Uhlenbeck process itself, ω(t), is completely independent of the dynamics of

x. To see why this is true, we need to calculate the distribution of the conditional random

variable (ω(t)|x(t) = α), and in order to do this, we need to calculate the distribution of the

bivariate random variable (x(t),ω(t)).

We know the Euler-Maruyama discretization to the Ornstein-Uhlenbeck process, ω, is

ωk+1 = ωk−∆tωk +σ
√

∆tGk+1. (45)

We can also discretize the differential equation for x, (43), as follows:

xk+1− xk

∆t
=−axk +ωk (46)

In order to solve for the probability distribution of the bivariate random variable (x,ω),

we will need to determine how the mean and variance-covariance matrix evolve over

time with given initial conditions. Since (x(t),ω(t)) will be a bivariate Gaussian ran-

dom variable, these are the quantities we need to know to fully describe its distribution.

Define the mean of x(t) and ω(t) as E(x(t)) = mx(t), and E(ω(t)) = mω(t). Similarly,

Var(x(t)) =Vx(t), Var(ω(t)) =Vω(t), and Cov(x(t),ω(t)) =Cxω(t). Thus,
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E

x(t)

ω(t)

=

mx(t)

mω(t)

 , cov

x(t)

ω(t)

=

 Vx(t) Cxω(t)

Cxω(t) Vω(t)


In order to solve for the evolution of mx(t) and mω(t), we first take expectations of both

sides of Equation (45) to get

E(ωk+1) = E
(

ωk−∆tωk +σ
√

∆tGk+1

)
=⇒ E(ωk+1)−E(ωk) =−∆tE(ωk).

Here, we have used the fact that Gk is a mean zero Gaussian for all k. Dividing through

by ∆t, and taking the limit as ∆t→ 0, we find

E(ωk+1)−E(ωk)

∆t
=−E(ωk) =⇒ dmω

dt
=−mω

Doing the same to Equation (46), we find

E(xk+1)−E(xk)

∆t
=−aE(xk)+E(ωk) =⇒ dmx

dt
=−amx +mω

Therefore, the time evolution of the means of this process, mx(t) and mω(t), are

mω(t) = mω(0)e−t . (47)

mx(t) = mx(0)e−at +
mω(0)
a−1

(
e−t− e−at) . (48)

We can solve for the time evolution of the Vx(t), Cxω(t) and Vω(t) in a similar way. First

square both sides of Equation (46) to get
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(xk+1− xk)
2 = (−axk∆t +ωk∆t)2

x2
k+1−2xk+1xk + x2

k = a2
∆t2x2

k−2a∆t2xkωk +∆t2
ω

2
k

Taking expectations of both sides of this equation and dropping all the terms with ∆t2,

we get

E(x2
k+1)−2E(xk+1xk)+E(x2

k) = 0

E
(
x2

k+1
)
−2E((xk−axk∆t +∆tωk)xk)+E(x2

k) = 0

E(x2
k+1)−2E(xk)

2 +2a∆tE(x2
k)−2∆tE(xkωk)+E(x2

k) = 0.

E
(
x2

k+1
)
−E(x2

k) =−2a∆tE(x2
k)+2∆tE(xkωk)

Dividing through by ∆t and taking the limits as ∆t→ 0, we find

E
(
x2

k+1
)
−E(x2

k)

∆t
=−2aE(x2

k)+2E(xkωk)

dVx

dt
=−2aVx +2Cxω

Similarly, we can solve for the differential equation defining the time evolution of Vω

and Cxω in the following way. Multiplying both sides of Equation (46) by ωk+1,we get

(
xk+1− xk

∆t

)
ωk+1 = (−axk +ωk)ωk+1(

xk+1ωk+1− xkωk+1

∆t

)
= (−axk +ωk)ωk+1

xk+1ωk+1− xk

(
ωk +∆tωk−σ

√
∆tGk+1

)
∆t

= (−axk +ωk)
(

ωk−∆tωk +σ
√

∆tGk+1

)
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xk+1ωk+1− xkωk

∆t
= (−axk +ωk)

(
ωk−∆tωk +σ

√
∆tGk+1

)
− xkωk +σ

xkGk+1√
∆t

Taking expectations of both sides of this equation, and dropping all the terms that in-

volve xkGk+1 and ωkGk+1, since Gk+1 is uncorrelated with xk and ωk,

E(xk+1ωk+1)−E(xkωk)

∆t
=−aE(xkωk)+a∆tE(xkωk)+E(ω2

k)−∆tE(ω2
k)−E(xkωk).

In the limit as ∆t→ 0, this becomes

dCxω

dt
=−(1+a)Cxω +Vω

Finally, we solve for dVω/dt by multiplying Equation (45) by ωk+1,

ωk+1ωk+1 = (ωk−∆tωk +σ
√

∆tGk+1)(ωk−∆tωk +σ
√

∆tGk+1)

ω
2
k+1 = ω

2
k−2∆tω2

k +2σ
√

∆tωkGk+1 +∆t2
ω

2
k−2∆t

√
∆tωkGk+1 +σ

2
∆tG2

k+1

ω2
k+1−ω2

k

∆t
=−2ω

2
k +2σ

ωkGk+1√
∆t

+∆tω2
k−2
√

∆tωkGk+1 +σ
2G2

k+1

Again, taking expectations, and dropping all terms with ωkGk+1, and using the fact that

E(G2
k+1) = 1, we get

E(ω2
k+1)−E(ω2

k)

∆t
=−2E(ω2

k)+∆tE(ω2
k)+σ

2.

In the limit as ∆t→ 0, this becomes

dVω

dt
=−2Vω +σ

2 .
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Suppose we are given deterministic initial conditions to this problem, where x(0) = 0,

and ω(0) = 0. Then, mx(t) = 0 and mω(t) = 0 for all t. Also, Vω(0) =Vx(0) =Cxω(0) = 0.

Solving the above differential equations, we find

Vω(t) =
σ2

2
(
1− e−2t) (49)

Cxω(t) =
σ2

2(a2−1)

(
a−1− (a+1)e−2t +2e−(a+1)t

)
(50)

Vx(t) =
σ2

2a(a−1)(a2−1)

(
(a−1)2−a(a+1)e−2t +4ae−(a+1)t +(2a2−5a−1)e−2at

)
.

(51)

At any given time t > 0, the solution to the system of equations in (43) and (44) will

be a bivariate Gaussian random variable, since the noisy force driving the process in the

Ornstein-Uhlenbeck process was Gaussian. Thus, the solution to this system of equations

with initial condition x(0) = 0,ω(0) = 0 is Gaussian for all time t > 0 with mean zero and

variance-covariance matrix at time t

 Vx(t) Cxω(t)

Cxω(t) Vω(t)

 .
However, we are only really interested in the steady state distribution, after time has

got very large. As t gets large, this variance-covariance matrix approaches the following

steady-state covariance matrix

σ
2

 1
2a(a+1)

1
2(a+1)

1
2(a+1)

1
2

 (52)

Note that the variance of the Ornstein-Uhlenbeck process in the steady-state is inde-

pendent of a. It will aways be σ2

2 . This is because the Ornstein-Uhlenbeck process itself is
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independent of the dynamical process x(t).

Our original problem was the following. What is the distribution of the conditional

random variable (ω(t)|x(t) = α)? We know the distribution of (x(t),ω(t)) is bivariate

Gaussian. Thus, from section 3.1, we know the conditional distribution of (ω(t)|x(t) = α)

is Gaussian with mean

µc = mω +CxωV−1
x (α−mx)

and variance

Vc =Vω−CxωV−1
x Cxω.

Let’s calculate µc = E(ω(t)|x(t) = α). Since mω = E(ω) = 0, and mx = E(x) = 0,

µc =
σ2

2(a+1)
2a(a+1)

σ2 α = aα.

Therefore, during the steady state invariant distribution of the process,

E
(

dx
dt

∣∣∣∣x(t) = α

)
= E(−ax(t)+ω(t)|x(t) = α)

= E(−ax(t)|x(t) = α)+E(ω(t)|x(t) = α)

=−aα+aα

= 0.

This will be true regardless of the value of α! This is a very strange fact. This was

63



only during the steady state invariant distribution of the process. However, the process will

approach its steady state invariant distribution very quickly. For example, when a = 1, we

have Cxω(t) = 1
4σ2 (1− e−2t(2t +1)

)
and Vx(t) = 1

4σ2 (1− e−2t(2t2 + t +1)
)
. So,

µc =
1− e−2t(2t +1)

1− e−2t(2t2 + t +1)
α.

Let’s take a look at the graphs of 1− e−2t(2t +1) and 1− e−2t(2t2 + t +1).
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Figure 35: Function Comparison

Both of these functions approach 1 quite rapidly, and are indistinguishable after about

time t = 5. For larger values of a, the process will approach the steady state even more

quickly. This is a very counter-intuitive result, and illustrates an interesting point, namely,

that when working with continuous-time stochastic processes, conditioning the derivative

of a stochastic dynamic variable on its present value will not be causality revealing. When

using Granger causality for a discrete-time stochastic process, we worked from the mathe-

matical fact that conditioning the present on the past was independent of the noise, that is,

if xk+1 = axk +σGk, where Gk is a standard normal Gaussian process with mean zero,

E(xk+1|xk = x) = E(axk +σGk|xk = x) = E(axk|xk = x)+(((((
(((E(σGk|xk = x) = ax.
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For the continuous-time stochastic process driven by Ornstein-Uhlenbeck noise, condi-

tioning the derivative of x on the present state of x is not independent of the noise process.

The point is that there is a difference between white noise (which does not remember its

past) and Ornstein-Uhlenbeck noise (which forgets its past rapidly, but not immediately).

To express this point slightly differently, we write the discretized linear system driven by

Ornstein-Uhlenbeck noise as

xk+1− xk

∆t
=−axk +ωk

Solving for xk+1 and conditioning on xk, we find

xk+1|xk = (xk−a∆txk +∆tωk) |xk = (1−a∆txk)xk +∆tωk|xk.

Now, as we showed earlier, ωk is not independent of xk in the invariant distribution.

Therefore, regressing the present on the past is not independent of the noise process, and

we cannot use this extension of Granger analysis for this problem.

So, we have to consider a different method for determining if x influences itself, having

only observations of the process x(t). What if we again fix x(t) = α, assuming the process

has reached the steady state, and look at the variance of the random variable
(

dx
dt

∣∣∣∣x(t) = α

)
and compare this to the variance of the random variable dx

dt , without conditioning? With

conditioning, we get:
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Var
(

dx
dt

∣∣∣∣x(t) = α

)
= Var(−ax(t)+ω(t)|x(t) = α)

=((((
(((

((((
a2Var(x(t)|x(t) = α)+Var(ω(t)|x(t) = α)

−2a
((((

((((
(((

((((
((

Cov(x(t)|x(t) = α,ω(t)|x(t) = α)

=Vω−CxωV−1
x Cxω

=
σ2

2
− ��σ

2

���
��2(a+1)
��2a����(a+1)

��σ
2

σ2

2(a+1)

=
σ2

2
− aσ2

2(a+1)

=
σ2

2(a+1)
.

Without conditioning, we get:

Var
(

dx
dt

)
= Var(−ax(t)+ω(t))

= a2Var(x(t))+Var(ω(t))−2aCov(x(t),ω(t))

= a2 σ2

2a(a+1)
+

σ2

2
−2a

σ2

2(a+1)

=
σ2

2a(a+1)
(
a2 +a(a+1)−2a2)

=
σ2

2a(a+1)
a

=
σ2

2(a+1)
.

This shows that conditioning the random variable dx
dt on a fixed value of x(t) does not

provide any insight to determining if x self-influences. However, we know the variance of

x(t) in the steady state, as well as the variance of dx
dt in the steady state, namely
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Var(x(t)) =
σ2

2a(a+1)
, Var

(
dx
dt

)
=

σ2

2(a+1)
.

Combining these two equations, and solving for a, we find

a =
Var
(dx

dt

)
Var(x(t))

. (53)

This provides a method to estimate a, only having information about the process x(t)!

Back to the original example, with a = 1. Using the same set of observations, {xk}N
k=0,

where xk = x(∆tk), ∆t = 0.001 and N = 500000 (so, the simulation ran until t = 500), we

can first estimate the derivative dx
dt using a second-order difference scheme, and from there

estimate the variance of dx
dt and x(t). When doing so, we get the estimate â = 0.9263. In

order to understand how accurate these estimates are, we need to know the distribution of

the estimate â. However, we will not discuss how to do this.

Granger studied how to analyze causality between two discretized stochastic dynamical

systems. His approach to measuring causality lies in the assumption that if one variable is

linearly dependent on the past of another variable, then the correlation between the current

value of that variable and the past value of the other should be non-zero. However, if the

underlying causal relationship between two variables is not linear, then we cannot use the

traditional method of Granger causality for discrete-time stochastic processes. There exist

non-linear Granger causality tests [16] [17], as well other methods entirely, for example

dynamical causal modeling [18]. Here, however, we will only present some basic ideas for

how one could measure causality in noise-driven oscillators, and what complications one

can run into while doing so.

67



4.3 Phase Oscillators Driven by Continuous-Time Noise Processes

Suppose we have two phase oscillators, θ1 and θ2, which start in a phase-locked state. From

the first section, we know that it is impossible to detect causal interactions between these

two phase oscillators when they are in their phase-locked state. Thus, we need some type

of noisy driving force to knock the system of the phase-locked state. One way to do this is

to add a Poisson stream of delta functions to both the dynamics of θ1 and θ2. In the general

context of neuroscience, Poisson processes are often used to model incoming signals from

neighboring neurons, which arrive at highly irregular time intervals. The model is defined

by the following system,

dθ1

dt
= ω1 + c12 sin(θ2−θ1), θ1(t) = θ1(t)+

π

10

∞

∑
k=1

δ

(
t−T (1)

k

)
(54)

dθ2

dt
= ω2 + c21 sin(θ1−θ2), θ2(t) = θ2(t)+

π

10

∞

∑
k=1

δ

(
t−T (2)

k

)
, (55)

where T (1)
1 ,T (1)

2 , ... and T (2)
1 ,T (2)

2 , ... are arrival times of the Poisson process, and as before

c12,c21 ≥ 0. Whenever t = T (i)
k , for k = 1,2, . . . , i = 1,2 the phase of the corresponding

oscillator is increased by a factor of π

10 . Here is a solution to the above system which begins

in the phase-locked state, as well as the corresponding plots for d cos(θ1)
dt and d cos(θ2)

dt .
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Figure 36: Phase Oscillators Driven by Poisson Noise
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During the inter-arrival times of the Poisson process, we clearly are able to detect that

cos(θ2) influences cos(θ1), but not vice-versa. The Poisson process continuously knocks

the system out of the stable phase-locked state, and the approach back to the phase-locked

state reveals who is influencing whom in this system.

Now, we make the noisy driving force for coupled phase oscillators an Ornstein-Uhlenbeck

process, and model the stochastic system as follows.

dθ1

dt
= ω1(t)+ c12 sin(θ2−θ1) (56)

dθ2

dt
= ω2(t)+ c21 sin(θ1−θ2) (57)

where ω1(t) and ω2(t) are Ornstein-Uhlenbeck processes, and as before c12,c21 ≥ 0. Sup-

pose the Ornstein-Uhlenbeck processes, ω1(t) and ω2(t) have mean ω̂1 and ω̂2, variances

σ2
1 and σ2

2, and parameters, ρ1 = 1 and ρ2 = 1. That is,

dω1 =−(ω1− ω̂1)dt +σ1dW1, (58)

dω2 =−(ω2− ω̂2)dt +σ2dW2, (59)

where σ1 > 0, σ2 > 0, and W1 and W2 are independent Wiener processes. Suppose c12 +

c21 ≥ |ω̂2− ω̂1|, so that if σ1 = σ2 = 0, the system would reach a stable phase-locked state.

Here is a sample solution to such a system.

0 10 20 30 40
−1

0

1

t

co
s(
θ
)

Student Version of MATLAB

Figure 37: Phase Oscillators Driven by OU noise, c12 = 0.5, c21 = 0, ω̂1 = 1.5, ω̂2 = 1.1, σ1 = σ2 = 0.3
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The corresponding plots of the estimated derivatives of cos(θ1) and cos(θ2) are pictured

here.
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Figure 38: cos(θ1) vs. d cos(θ1)/dt
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Figure 39: cos(θ2) vs. d cos(θ2)/dt

It appears that the plot of d cos(θ1)/dt varies more than d cos(θ2)/dt, however it is

not immediately clear if this implies causality from cos(θ2) to cos(θ1). Due to the noisy

driving forces of the Ornstein-Uhlenbeck processes, we are no longer able to deduce with

any certainty the direction of causality simply by looking at these two graphs. So, we have

to consider a different method of deducing directional causality in this case. To do so, we

can try to incorporate some of the ideas of Granger causality in our analysis. For linear

discrete-time stochastic processes, Granger causality rests upon the idea of regressing the

present of one variable on its own past, and then on the past of another variable. If the

second regression provides a more accurate prediction, then the other variable is said to

Granger cause the first variable. Let’s see if we can apply this idea to the phase oscillators.

The first idea is to fix cos(θ1(t)), however, when we fix cos(θ1(t)) at a value α ∈

(−1,1), and look at cos(θ1(t))
dt at times where cos(θ1(t)) is close to α, then the histogram

plot will be bimodal. For example, when letting the above simulation run for 10,000π units

of time, and plotting the density histogram of d cos(θ1(t))
dt at times where cos(θ1(t)) is near

α = 0.5, then we get the following histogram plot
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Figure 40: Density Histogram of d cos(θ1(t))/dt whenever cos(θ1(t))≈ 0.5

We can also fix cos(θ1(t)) at times where cos(θ1(t)) is near α = 0.5, and d cos(θ1(t))
dt < 0.

When we do this, we get the following density histogram plot.
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Figure 41: Density Histogram of d cos(θ1(t))/dt whenever cos(θ1(t))≈ 0.5 and d cos(θ1(t))/dt < 0

Now, we can also pick times within this set whenever cos(θ2) is near a certain value,

call it β. What we are doing here, in effect, is regressing d cos(θ1(t))/dt on cos(θ1(t)), and

then regressing d cos(θ1(t))/dt on both cos(θ1(t)) and cos(θ2(t)). For β = −0.5, we get

the following histogram density plot, which we overlay on the above plot.
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Figure 42: Density Histogram of d cos(θ1(t))/dt whenever cos(θ1(t)) ≈ 0.5 and d cos(θ1(t))/dt < 0 (in blue) and the subset
where cos(θ2)≈−0.5 (in cyan)

Here, we see a clear difference in the distribution of the density histogram plots, which

leads us to believe that cos(θ2) influences cos(θ1). Now, we do the same analysis to see if

cos(θ1) influences cos(θ2). First, we fix cos(θ2(t)) at times where cos(θ2(t)) is near -0.5

and d cos(θ2)
dt < 0. When doing this, we get the following density histogram plot.
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Figure 43: Density Histogram of d cos(θ2(t))/dt whenever cos(θ2(t))≈−0.5 and d cos(θ2)/dt < 0.

As before, we pick times within this set whenever cos(θ1) is near a certain value, let

it be 0.5, and overlay the histogram density plot on the above histogram plot to get the

following.
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Figure 44: Density Histogram of d cos(θ2(t))/dt whenever cos(θ2(t))≈−0.5 and d cos(θ2)/dt < 0 (in red) and the subset where
cos(θ1)≈ 0.5 (in magenta)

These two density histogram plots look very similar. Hence, these plot correctly suggest

that cos(θ2) influences cos(θ1) but cos(θ1) does not influence cos(θ1). However, in order

to test this, we would need to know the underlying distribution of these dynamic processes,

which we do not. Also, in order for this type of analysis to be possible, we need to let the

simulation run for a long enough time, so that the trajectory passes through the target range

enough times, and we need strong enough noise, so that the process gets kicked out of the

attracting phase-locked state enough.

What if there is mutual causation in the phase oscillators model? Then, we would

expect that both of the density histogram plots should be different. Let’s try it. Setting

c12 = 0.2 and c21 = 0.2 and leaving all other parameters the same as they were in the above

simulation, we get the following density histogram plots.
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Figure 45: Density Histogram of d cos(θ1(t))/dt whenever cos(θ1(t)) ≈ 0.5 and d cos(θ1(t))/dt < 0 (in blue) and the subset
where cos(θ2)≈−0.5 (in cyan)
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Figure 46: Density Histogram of d cos(θ2(t))/dt whenever cos(θ2(t))≈−0.5 and d cos(θ2)/dt < 0 (in red) and the subset where
cos(θ1)≈ 0.5 (in magenta)

Here, there is a clear difference in both of the histogram plots! When setting c12 = 0

and c21 = 0.5, and leaving all other parameters the same as they in the above simulation,

we get the following density histogram plots.
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Figure 47: Density Histogram of d cos(θ1(t))/dt whenever cos(θ1(t)) ≈ 0.5 and d cos(θ1(t))/dt < 0 (in blue) and the subset
where cos(θ2)≈−0.5 (in cyan)
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Figure 48: Density Histogram of d cos(θ2(t))/dt whenever cos(θ2(t))≈−0.5 and d cos(θ2)/dt < 0 (in red) and the subset where
cos(θ1)≈ 0.5 (in magenta)

Here, we see a clear difference in the histogram density plots in Figure 48, however, we
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do not see a difference in the histogram density plots in Figure 47. This correctly suggests

that cos(θ1) influences cos(θ2), but cos(θ2) does not influences cos(θ1). So, it would seem

that this extension of Granger causality works, however, without knowing the underlying

distribution of these estimates, we cannot set up a statistical test to determine causality.

4.4 Wilson-Cowan Oscillators Driven by Continuous-Time Noise Pro-

cesses

We would like to use this same approach to measure causality in a coupled Wilson-Cowan

oscillator driven by continuous-time noise. We use the same model as presented in section

2.4, and now add Ornstein-Uhlenbeck drive to all four variables of the system, E(1), I(1),

E(2), and I(2). That is,

dE(1)

dt
=

E(1)
∞ −E(1)

5
+ω1(t),

dI(1)

dt
=

I(1)∞ − I(1)

10
+ω2(t),

dE(2)

dt
=

E(2)
∞ −E(2)

5
+ω3(t),

dI(2)

dt
=

I(2)∞ − I(2)

10
+ω4(t),

where ω1(t), ω2(t), ω3(t), and ω4(t) are independent Ornstein-Uhlenbeck processes. As-

sume we are given only observations of the excitatory components of this network, E(1)

and E(2), and want to determine if there is causal relationship between these two compo-

nents. So, we are only observing two variables of a phase space which consists of eight

variables, E(1), I(1), E(2), I(2), ω1, ω2, ω3, and ω4. But, our situation is not hopeless. We

can try to use the same approach from the last section to measure causality between the

excitatory components of this network. Here is a sample solution of E(1)(t) and E(2)(t) for
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t ∈ [0ms,500ms], where the independent Ornstein-Uhlenbeck processes ω1, ω2, ω3, and ω4

all have mean zero and variance σ2 = 9.0, and the same mean-reverting rate, ρ = 1.0.
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Figure 49: Excitatory components of two Noisy Wilson-Cowan Oscillators

Can we detect if E(1) influences E(2) or if E(2) influences E(1) just from looking at this

plot. Well, this segment is too short to detect causality in either direction, but what if we

had a segment of the dynamical system for a length of time of 100,000 ms? This would

only be 100 seconds, not an unrealistic length of time for a segment of an EEG. Would it be

possible to apply the extension of Granger causality we used on the phase oscillators here?

Let’s try it!

Perhaps we can use some of our understanding of the Wilson-Cowan model to develop

a good method for detecting causality. As usual, we build our test to look for causality

based on the null hypothesis that there is no causality. Now, we know that if the system

is on a stable limit cycle, then we cannot detect directional causality. However, with the

added Ornstein-Uhlenbeck noise, the system is constantly being pushed away from the

stable limit cycle. If the system is far enough away from the stable limit cycle, and there is

no causality from E(2) to E(1) (that is, ϕ1 = 0), then we would expect E(1) to be indifferent

if E(2) is large or small. However, if ϕ1 6= 0, then whenever E(2) is large, it should have a

positive influence on E(1), that is, E(1) should increase. There is a physical interpretation of

this as well, namely, if two neuronal networks are connected from excitatory cells to other

excitatory cells, then more activity in the excitatory cells in one of the networks should

cause an increase in the activity of the excitatory cells in the other network.
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For the following example, we set ϕ1 = 0.5 and ϕ2 = 0. So, E(2) influences E(1),

but E(1) does not influence E(2). We can test this as follows. Fix E(1)(t) at times where

E(1)(t) is near the value α = 10 (so there is minimal excitatory activity in the network), and
dE(1)(t)

dt > 0, that is, E(1)(t) is in the middle of an upward trajectory. When we do this, we

get the following density histogram plot.
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Figure 50: Density Histogram of dE(1)/dt whenever E(1)(t)≈ 10 and dE(1)/dt > 0

Now, we can also pick times within this set whenever E(2)(t) is very large, so there is

a lot of excitatory activity in network 2. We restrict ourselves to values E(2)(t) > 70, and

plot a density histogram over the previous figure. Now, we would expect that if ϕ1 = 0,

then this histogram plot should look similar to the one above. However, if ϕ1 6= 0, then we

would expect that the histogram plot should be shifted to the right. That is, whenever we

regress on large values of E(2)(t), we expect an increase in the mean of the distribution of

the derivative dE(1)(t)/dt. When doing this, we get the following histogram plot, overlaid

over the previous plot.
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Figure 51: Density Histogram of dE(1)/dt whenever E(1)(t)≈ 10 and dE(1)/dt > 0 (in blue) and the subset where E(2)(t)> 70
(in cyan)

It looks like the cyan density histogram plot is shifted to the right, so this plot correctly

suggests that E(2) influences E(1). Now, we can do the same analysis to see if E(1) influ-

ences E(2), that is, if ϕ2 6= 0. First, we fix E(2)(t) at times where E(2)(t) is near 10 and

dE(2)

dt > 0. When doing this, we get the following density histogram plot.
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Figure 52: Density Histogram of dE(2)/dt whenever E(2)(t)≈ 10 and dE(2)/dt > 0

As before, pick times within this set whenever E(1)(t)> 70, and overlay the histogram

density plot on the above plot.
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Figure 53: Density Histogram of dE(2)/dt whenever E(2)(t) ≈ 20 and dE(2)/dt > 0 (in red) and the subset where E(1)(t) > 70
(in magenta)

The restricted histogram plot on large values of E(1)(t) seems to be shifted to the left.

This certainly does not suggest that E(2) influences E(1), since otherwise, we would have

expected a shift to the right. So, this plot correctly suggests that E(1) does not influence

E(2).

Now, we do the same analysis for ϕ2 = 0.5 and ϕ1 = 0, so there is one-way causality

from E(1) to E(2), but not from E(2) to E(1). Doing the same analysis as above we get the

following density histogram plots.
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Figure 54: Density Histogram of dE(1)/dt whenever E(1)(t)≈ 10 and dE(1)/dt > 0 (in blue) and the subset where E(2)(t)> 70
(in cyan)

Here, we see a clear shift to the right in the density histogram plot in Figure 55, which

correctly suggests E(1) influences E(2). However, we see no shift to the right in Figure 54,

which correctly suggests E(2) does not influence E(1).
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Figure 55: Density Histogram of dE(2)/dt whenever E(2)(t) ≈ 20 and dE(2)/dt > 0 (in red) and the subset where E(1)(t) > 70
(in magenta)

What if there is mutual causation in the Wilson-Cowan oscillator? Let ϕ1 = 0.2 and

ϕ2 = 0.2, so there is causality in both directions. Are we still able to detect the mutual

causation using this method? Here is a short segment of E(1)(t) and E(2)(t) for the first 500

ms of the simulation.
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Figure 56: Excitatory components of two Noisy Wilson-Cowan Oscillators with mutual causality

Note how correlated the two components are, so we do not expect too many instances

where E(1)(t) and E(2)(t) differ by a lot. However, over time, the noise will eventually push

them further away from the attracting limit cycle. When doing the analysis as before, and

letting the simulation run until 100,000 ms, we get the following density histogram plots.
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Figure 57: Density Histogram of dE(1)/dt whenever E(1)(t)≈ 10 and dE(1)/dt > 0 (in blue) and the subset where E(2)(t)> 70
(in cyan)
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Figure 58: Density Histogram of dE(2)/dt whenever E(2)(t) ≈ 20 and dE(2)/dt > 0 (in red) and the subset where E(1)(t) > 70
(in magenta)

We do see a slight shift in both density histogram plots to the right, suggesting mutual

causality. Thus, this simple extension of Granger causality to the noise-driven Wilson-

Cowan oscillators works.
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5 Conclusion

In this work, we have looked at how to detect causality in continuous-time dynamical sys-

tems in the absence of noise. We saw that without any given information about the dynam-

ical system itself, it is impossible to detect causal interactions between components of a

system while it is in a steady state – stable fixed point for the linear system, phase-locked

state for the phase oscillators, and the stable limit cycle for coupled Wilson-Cowan oscilla-

tors. However, it is possible to detect causal interactions during the approach to the steady

state.

We saw how and why Granger causality works for a linear discrete-time stochastic

process. The main idea of Granger causality in this setting is to regress the present of one

dynamic variable on its own past, and then include into that regression the past of another

dynamic variable. If the second regression is more accurate, that is the variance of the

error terms in the regression is smaller than in the first regression, then the other dynamic

variable is said to Granger cause the first. When the underlying dynamics of the system

are linear, and the system has a stationary invariant distribution, this technique works very

well.

When introducing continuous-time noise processes to a dynamical system, however, the

idea of Granger causality becomes murky. As we saw with the linear system driven by an

Ornstein-Uhlenbeck process, we cannot condition the present of one dynamic variable onto

its past and ignore the noise terms as we did in the discrete time stochastic process. This is

mainly because the Ornstein-Uhlenbeck process is not uncorrelated with its own past and

the past of the variable it influences, as it was in the case of the white noise process in the

discrete case. However, for the linear system driven by Ornstein-Uhlenbeck noise, we can

calculate the invariant distribution of the process, and using that, estimate causality.

We also saw that for the phase oscillator, shocks to the system in the form of a Poisson
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process lead to easy detection of causal interactions. However, when introducing Ornstein-

Uhlenbeck drive, it is not so clear how to detect causal interactions. However, our extension

of Granger causality lead us to believe that it is possible to detect causality from one phase

oscillators to the other by simple heuristics.

Lastly, we showed that for coupled Wilson-Cowan oscillators driven by Ornstein- Uh-

lenbeck noise, our extension of Granger causality worked. This shows that it is still pos-

sible to detect causality in a more complicated model, where not all of the elements of

that dynamic system are observable. However, we were only using simple heuristics. The

question of how to set up a statistical test to test for causality in more complicated, nonlin-

ear dynamical systems is still open-ended, and there are still many interesting questions to

be answered. For example, if we introduce other types of stochastic processes besides the

Ornstein-Uhlenbeck process, are we still able to detect causality? What if the noisy driving

forces have different parameters, that is, different variances and mean-reverting rates in the

case of Ornstein-Uhlenbeck noise? How do we deal with time-delays, if the affect from

one dynamic variable to another is delayed rather than instantaneous?

We have shown that a simple extension of Granger causality from discrete-time linear

stochastic processes to continuous-time non-linear stochastic processes is effective. In the

context of neuroscience, people are interested in building the effective connectivity of dif-

ferent brain regions from collected neuronal data. Using this extension, it may be possible

to detect causality between different brain regions from collected data.
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