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ABSTRACT 

Planning for natural hazards and climate change requires that we develop the best 

possible understanding of future hydroclimatic conditions.  Modeling tools have become 

essential in meeting this goal, but selecting the most appropriate models and distilling 

actionable findings from their outputs is still a major challenge.  In this research, we 

investigate this issue from two perspectives: (1) the evaluation of hypothesized natural 

hazard models, with a focus on predicting flooding events (Chapters 1 and 2); and (2) 

patterns of agreement and uncertainty in water availability projections derived from a 

wide array of climate model ensembles (Chapter 3).  The first chapter evaluates the 

appropriateness of traditional metrics of ‘goodness-of-fit’ as measures of the 

performance of a hypothesized natural hazard model (i.e., the applicability of a selected 

probability density function).  We find that goodness-of-fit can be quite misleading, 

causing us to reject the correct model and generate potentially large errors in design 

event (e.g., 1000-year flood) estimation in the process.  We propose an alternative 

metric that gives a more balanced assessment of goodness-of-fit.  In the second chapter, 

we introduce a property called transformational concordance.  This property can be 

used to evaluate whether a hypothesized model and its distributional behavior are 

consistent with observations.  Through our analysis of concordance, we reveal 

systematic bias in GEV parameter estimation, which is cause for significant concern 

given the wide application of the model for flood and other natural hazard modeling.  

The third chapter focuses on improving our understanding of the timing, location, and 

magnitude of climate change impacts on water needs and availability.  Using a wide 

range of recently available climate model ensembles, we explore the spatial and 

temporal patterns of inter-model agreement and uncertainty in projected river runoff, 
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irrigation water requirements, and basin storage yield.  Cost estimates of adapting 

global water supply systems are developed for each ensemble, and implications for 

water management are discussed. 
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INTRODUCTION 

This dissertation is composed of three chapters that focus on the evaluation and 

application of natural hazard and climate change models.  Modeling tools have become 

essential in developing the best possible understanding of future hydroclimatic 

conditions, but selecting the most appropriate models and distilling actionable findings 

from their outputs is still a major challenge.  In this dissertation, we investigate this 

issue from two perspectives: (1) the evaluation of hypothesized natural hazard models, 

with a focus on predicting flooding events (Chapters 1 and 2); and (2) patterns of 

agreement and uncertainty in water availability projections derived from a wide array of 

climate model ensembles (Chapter 3).  The first two chapters illustrate the challenges of 

selecting and fitting statistical models using both observed flooding data from the U.S. 

Geological Survey (USGS) and Monte Carlo analysis to investigate questions that require 

numerical experimentation.  The last chapter, on the other hand, investigates patterns 

of change in future global water resource availability using a suite of water demand and 

availability models that are driven by climate changes from a set of 220 General 

Circulation Models (GCMs).  As a global study that relies on simulation rather than 

statistical models, the research presented in Chapter 3 is considerably more data 

intensive than research presented in Chapters 1 and 2.   

Chapter 1 is titled Goodness-of-Fit Can Be Misleading and is co-authored with 

Professor Richard Vogel of Tufts University.  This chapter evaluates the appropriateness 

of traditional metrics of ‘goodness-of-fit’ as measures of the performance of a 

hypothesized natural hazard model (i.e., the applicability of a selected probability 

density function).  When modeling the relationship between the frequency and 

magnitude of a natural hazard, there is a need to select and fit a frequency distribution 
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of the hazard of interest which mimics the unknown parent distribution.  Hypothesis 

tests and goodness-of-fit metrics are often used to assess how well a hypothesized 

probability density function (pdf) fits observations.   The goal of such evaluations is to 

ensure that the chosen probability model reproduces various important properties 

associated with the correct pdf.  In our investigation of goodness-of-fit, we focus on the 

Probability Plot Correlation Coefficient (PPCC), which is based on a quantile-quantile (Q-

Q) probability plot and is perhaps the most widely-used goodness-of-fit metric for 

natural hazard model evaluation.  Among 200 flood series from rivers in the U.S. with 

very long records, we note that it was generally only those rivers that experienced 

extraordinary floods that had consistently very low PPCC values, leading one to question 

the goodness-of-fit of commonly used pdfs to those samples with the most critical flood 

experience.   Using Monte Carlo experiments, we find that when (a) a particular sample 

happens to contain a high outlier or (b) we introduce additional information about the 

true underlying model, the goodness-of-fit declines rather than increases.  As a result, 

we find that PPCC can be quite misleading, causing us to reject the correct pdf and 

generate potentially large errors in design event estimation.  Further experiments lead 

us to observe systematic errors in quantile prediction when the maximum sample value 

diverges significantly from the n-year return period event, and to observe that 

witnessing such a divergence may provide a warning of possible design errors.  We 

attempt an adaptive strategy involving replacement of the largest observation(s), and 

although that approach has promise for its ability to reduce root mean square error 

(RMSE), we argue that generating better estimates of skewness using regional methods 

is likely to be the best approach forward for reducing both bias and RMSE associated 

with design events.  To conclude this chapter, we introduce PPCC goodness-of-fit 
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metrics based on probability-probability (P-P) plots, which are shown to give a much 

more balanced assessment of the goodness-of-fit of a hypothesized pdf.   

Chapter 2 is titled Transformational Concordance of the Generalized Extreme Value 

Distribution, and is co-authored by Professor Richard Vogel and Dr. Nicolas Matalas, 

who is retired from the U.S. Geological Survey.  In this chapter, we first note that for a 

scientific hypothesis to be consistent with observations, it must exhibit concordance 

with observed data across space, time, as well as across functional transformations.  The 

chapter focuses on the problem of selecting a probability distribution for modeling 

natural hazards that exhibits transformational concordance with observed data.  A data 

series is transformationally concordant if its properties under each transformation (e.g., 

real space to log space) are consistent with our theoretical understanding of how those 

properties change across transformations.  For example, in real space, if a sequence of 

observations is assumed lognormal and if logarithms exhibit zero skewness, the 

lognormal distribution in real space and the normal distribution in log space would be 

transformationally concordant.   Exploring one of the most widely-used models for flood 

frequency analysis, we use 200 long flood records in the U.S. to consider the 

transformational concordance of the Generalized Extreme Value (GEV) model.  If 

observations are GEV, then their adjusted logarithms should follow a Gumbel pdf.   The 

GEV pdf exhibited the best goodness-of-fit among several alternative pdfs for the 200 

flood series using traditional metrics.  However, the flood series were found to be 

transformationally discordant under the GEV hypothesis, and the GEV model was found 

to significantly underestimate the frequency of extremely large design events. Both the 

discordance and design event bias appear to be attributable to systematic bias in GEV 

parameter estimation that is largely addressed by application of regional skew 
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estimates.  To conclude Chapter 2, we identify the potential for a GEV hypothesis test 

based on transformational concordance.   

Chapter 3 is titled Water under a Changing and Uncertain Climate: Lessons from 

Climate Model Ensembles and is co-authored by Professors Susan Solomon and Kenneth 

Strzepek of the Massachusetts Institute of Technology.  The third chapter is motivated 

by the fact that climate change and rapidly rising global water demand are expected to 

place unprecedented pressures on already strained water resource systems.  

Successfully planning for these future changes requires a sound scientific understanding 

of the timing, location, and magnitude of climate change impacts on water needs and 

availability – not only average trends, but also interannual and decadal variability and 

associated uncertainties.  In recent years, two types of large ensemble runs of climate 

projections have become available, those from groups of more than 20 different climate 

models, and those from repeated runs of several individual models. These provide the 

basis for novel probabilistic evaluation of both climate change and the resulting effects 

on water resources.  Using a range of available climate model ensembles, this Chapter 

explores the spatial and temporal patterns of inter-model agreement and uncertainty in 

projected river runoff, irrigation water requirements, and basin storage yield.  Cost 

estimates of adapting global water supply systems are developed for each ensemble.  

We observe strong spatial patterns of multiple-ensemble agreement and disagreement 

in both precipitation and runoff trends.  Regions with robust cross-ensemble drying 

trends include southern Europe, northern Africa, western Australia, southern Africa, 

eastern Brazil, and northern Mexico; and wetting trends occur in the northeastern US, 

Canada, northern regions of the globe, and parts of southeast Asia.  Relative to changes 

in precipitation, we find that patterns of changes in basin yield are both magnified and 
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systematically drier due to the dependence of river runoff on land surface dynamics and 

temperature.  Due to the temporally integrating effects of basin yield and monetary 

discounting, the costs of maintaining historical yields show still stronger patterns of 

agreement across GCM ensembles, particularly when focusing on agreement within 

broad geographic regions of the globe.   We recommend future research that evaluates 

patterns of GCM ensemble agreement and disagreement under a broader assessment 

that integrates projected changes in irrigation water requirements into an analysis of 

basin water supply, under a future that incorporates rising food demands, population 

increases, and environmental flow requirements.   
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ABSTRACT 

When modeling the relationship between the frequency and magnitude of a natural 

hazard, there is a need to select and fit a frequency distribution of the hazard of interest 

which mimics the unknown parent distribution.  Hypothesis tests and goodness-of-fit 

metrics are often used to assess how well a hypothesized probability density function 

(pdf) fits observations.    The goal of such evaluations is to ensure that the chosen 

probability model reproduces various important properties associated with the correct 

pdf.  The probability plot correlation coefficient test (PPCC) which is based on a quantile-

quantile (Q-Q) probability plot is a widely used tool for evaluating the goodness-of-fit of 

a hypothesized pdf to a sample of observations.  Among 200 flood series from rivers in 

the U.S. with very long records, we note that it was generally only those rivers that 

experienced extraordinary floods that had consistently very low PPCC values, leading 

one to question the goodness-of-fit of commonly used pdfs to those samples with the 

most critical flood experience.   We further document, using Monte Carlo experiments, 

that the PPCC metric is very sensitive to observations that appear to be high outliers, 

and that when we introduce additional information about the true underlying model, 

the goodness-of-fit declines rather than increases.  As a result, the metric can be quite 

misleading, causing us to reject the correct pdf in situations when it would have been 
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very important to accept it.  Further experiments lead us to observe systematic errors in 

quantile prediction when the maximum sample value diverges significantly from the n-

year return period event, and to observe that witnessing such a divergence may provide 

a warning of possible design errors.  We attempt two adaptive strategies, and find that 

although an approach involving replacement of the largest observation(s) may have 

promise, particularly in reducing root mean square error (RMSE), generating better 

estimates of skewness using regional methods is likely to be the best approach forward 

for reducing both bias and RMSE associated with design events.  We introduce PPCC 

goodness-of-fit metrics based on probability-probability (P-P) plots, which are shown to 

give a much more balanced assessment of the goodness-of-fit of a hypothesized pdf.     
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1. INTRODUCTION 

In modeling the relationship between frequency and magnitude of natural hazards, 

we seek to ensure that the chosen probability density function (pdf) and associated 

model parameters reflect, as closely as possible, the unknown parent distribution.   

There are many pdfs that could represent a given physical process, and an infinite 

number of parameter combinations that map that pdf to the specific context being 

modeled.   For example, in the context of flood frequency analysis, annual maximum 

flow series have been shown to be reasonably well modeled  by the Log-Pearson Type III 

(LP3), Generalized Extreme Value (GEV), or three parameter Lognormal (LN3) probability 

models over broad geographical regions (for a review, see Tables 3 and 4 in Vogel  and 

Wilson 1996, Kidson and Richards 2005, El Adlouni et al. 2008, and Table 2 in Gubavera 

2011). By selecting a pdf and set of parameters that most accurately represent the 

watershed under consideration, we ensure that the outputs of our frequency analyses 

will also be as accurate as possible.  This means that estimation of the magnitude of 

design events (e.g., 1,000-year flood) will be as close as possible to the “true” values 

that would occur in the physical system itself.    

Hypothesis tests and goodness-of-fit metrics are often used to assess how well a 

postulated pdf fits observations. Perhaps the most widely used goodness-of-fit statistic 

for distributional selection is known as the probability plot correlation coefficient (PPCC) 

which has now been developed for a very broad range of hypothesized pdfs (see Heo et 

al. 2008 for a recent review).    Although the PPCC goodness-of-fit metric is now widely 

used in the context of frequency analysis of hydrologic and other extreme events, 

natural hazards time series tend to exhibit outliers and other characteristics that pose 

unique challenges for the interpretation of such metrics (IACWD 1982, Gen and Koehler 
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1990, Laio et al. 2010).  For the purposes of this study, outliers are observations that 

appears to deviate considerably from the other observations within a given sample 

(Grubbs 1969).  Methodologies have been developed for addressing outliers in natural 

hazard frequency analysis, most recently by Cohn et al. (2013), who focus on mitigating 

the influence of low outliers in pdf parameter estimation.  Their method improves the fit 

of the frequency distribution to observed high flows, making the flood frequency 

analysis more robust.   

Using actual flood series, we document systematic bias associated with the PPCC 

goodness-of-fit metric, as well as estimates of design events resulting from samples that 

appear to contain high outliers or very low maximum values.  These flood series are 

used to expose systematic bias associated with our interpretation of goodness-of-fit as 

well as our ability to estimate design events such as the 1,000-year flood.    We rely on 

Monte Carlo experiments to document our findings in a more definitive manner using 

the three probability models noted above.  Next, we document the value of potential 

adaptive approaches for identification and treatment of outliers to reduce bias 

associated with both goodness-of-fit measures and design flood estimates.  Lastly, we 

recommend an alternative goodness-of-fit  PPCC metric that provides a more balanced 

assessment of the ability of a hypothesized pdf to mimic flood series, regardless of 

whether they exhibit outliers or not. 

 

2. GOODNESS-OF-FIT VERSUS HYPOTHESIS TESTS 

Comparing the goodness-of-fit of a range of probability models to observations is a 

standard practice in natural hazard frequency analysis.   To illustrate the bias in 
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goodness-of-fit measures when outliers are present, we focus on the PPCC metric, 

which is the correlation between the ranked observations and the fitted quantiles 

associated with their ranked plotting positions on a quantile-quantile (Q-Q) plot.   PPCC 

tests have been developed for many probability models, including the normal, 

lognormal and Gumbel distributions (Vogel 1986), and the Pearson type 3 (Vogel and 

McMartin 1991) and others (see Heo et al. 2008).    For two parameter pdfs with fixed 

shape, the value of a PPCC statistic is only affected by sample size, choice of plotting 

position, and significance levels.  However, for 2-parameter pdfs with varying shape 

(e.g., Gamma) and for all 3-parameter pdfs, the PPCC goodness-of-fit metric depends 

additionally upon the shape parameter of the distribution.   

A formal hypothesis test should not depend upon estimated parameters of the 

distribution.  When a PPCC hypothesis test depends upon the parameter estimates of a 

pdf, in addition to sample size and significance level, such tests tend to have low power 

compared to similar tests for distributions with fixed shape (see Vogel and McMartin 

1991).    Instead, in such situations when the PPCC statistic depends on estimates of 

model parameters, the statistic becomes solely a goodness-of-fit metric which cannot 

be formally used to either accept or reject a scientific hypothesis.    Here we focus on 

goodness-of-fit evaluations that tend to be relevant only for such complex pdfs with 

varying shape parameters, such as the GEV, LP3, LN3 and a variety of other pdfs 

commonly used to model natural hazards.  Figure 1 provides an example of GEV Q-Q 

plots for four approximately 100-year series of annual maximum observed flows.  Figure 

1 illustrates the ordered observations along the horizontal axis, and the theoretical 

quantiles of the GEV distribution along the vertical.  We estimate GEV model 

parameters and generate random samples using the method of L-moments (see Hosking 
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1990 and Hosking and Wallis 1997), as configured within the R software package 

lmomco (Asquith 2011).  Also shown is the correlation between the two axes, known as 

the PPCC value.  Importantly, each of these flood series contains an event that is 

modeled as having a return period greater than 1,000-years; this event is apparent as an 

off-diagonal data point on the right side of each graph. 

 

 
Figure 1. Examples of Q-Q plots from four observed maximum annual flow series (in 
cubic-feet per second) of approximate length 100.  Ordered observations along the 
horizontal axis, and the theoretical quantiles of the GEV distribution are along the 
vertical.  These four series each contain at least one event that is modeled as having a 
return period greater than 1,000-years. 

The analysis in Figure 1 was repeated for the 200 annual maximum instantaneous 

streamflow time series recently assembled, analyzed and summarized by Hirsh and 

Ryberg (2012).  These 200 annual maximum flood series have record lengths ranging 

from 85 to 126 years, with an average of 94.2 years, and are located across the 
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conterminous U.S.  The resulting values of the PPCC statistics for five common 

distributions for modeling annual maximum flows, including GEV, are summarized using 

boxplots in Figure 2.  We also highlight PPCC values (as black triangles) that correspond 

to rivers whose largest flood observation was greater than the estimated 1,000-year 

flood.  For each hypothesized pdf, L-moment estimators were used to estimate the pdf 

model parameters and to estimate the average return period associated with the largest 

observation.   Here we observe the almost uniform phenomenon that, for all pdfs 

considered, those rivers with low values of the PPCC goodness-of-fit statistic correspond 

to exactly those rivers in which the largest observed flood was greater than the 

estimated 1,000-year event.  This result is rather compelling, because it indicates that 

the goodness-of-fit of each distribution is lowest for those samples that have 

experienced extraordinary floods, perhaps the most important experience on record for 

flood frequency analysis.  The results in Figure 2 lead to only one of the following two 

conclusions: (1) the probability models considered in Figure 2 perform poorly for flood 

samples that have extraordinary flood experience, or (2) the PPCC goodness-of-fit 

statistic, based on a Q-Q plot, is misleading for flood samples that have extraordinary 

events.  To ascertain which of these conclusions is correct, we perform several Monte 

Carlo experiments in the following sections.  
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Figure 2. Boxplots of PPCC statistics using Q-Q plots for five distributions.  Each 
boxplot includes 200 stations.  Circles are outliers, and triangles are events with 
greater than 1,000-year return periods.  GEV is Generalized Extreme Value; “Gum” is 
Gumbel; “LN2” is 2-parameter lognormal; “LN3” is 3-parameter lognormal; and 
“LP3”is Log-Pearson Type III. 

 

 

 

3. THE PPCC GOODNESS-OF-FIT STATISTIC CAN BE MISLEADING 

The previous section suggests that the PPCC goodness-of-fit statistic based on a Q-Q 

plot may be misleading for samples that include extraordinary flood events. To 

investigate this issue, we examine the relationship between PPCC estimates that rely on 

sample estimates of pdf model parameters versus PPCC estimates that rely on the true 

underlying pdf model parameter values.  Initially, our intuition led us to hypothesize 

that goodness-of-fit as measured by the PPCC statistic would be higher when the true 

pdf parameter values are used instead of sample estimates of pdf parameters. To test 
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this hypothesis, we generate 100,000 random samples of length 100 from the three pdfs 

used most widely to model floods: GEV, LP3, and LN3.    We also ran these experiments 

using sample sizes of 25 and 50, but the conclusions were unaffected, thus we only 

report results here for sample sizes of 100.  The pdf model parameters needed to 

generate the random samples are fixed for each distribution, and are taken as the 

“true” parameter values of each model.  We then estimate PPCC values for each sample 

by computing the correlation between the ordered observations and their theoretical 

values, which we evaluate based on the sample and true parameters.  For the GEV, LP3, 

and LN3 distributions, we use the Gringorten, Blom, and Weibull plotting positions, 

respectively, based on recommendations by Vogel (1986) and Vogel and McMartin 

(1991) and others.    

Figure 3 illustrates that over two-thirds of the 100,000 samples from each of the 

three distributions had lower PPCC values when using the true parameters than when 

using the estimated parameter values.  Apparently, incorporation of more information 

about the true nature of the probability model into the PPCC calculation results in a 

reduction rather than an improvement in the goodness-of-fit for all three of the 

distributions considered.   Figure 3 provides evidence in support of our primary 

hypothesis, that is, goodness-of-fit can be misleading.  In each case illustrated in Figure 

3, we assume that the hydrologist has chosen the correct model, thus one would expect 

goodness-of-fit to improve as more information is available concerning the values of the 

true model parameters.  Instead, we observe that ‘fitting’ each pdf to the observations, 

results in a ‘kind of’ model tuning, where the estimated model parameters act to make 

the model ‘adhere’ more closely to the observations.   Thus, the PPCC goodness-of-fit 

statistic is misleading in such instances, because it leads us to conclude the model fits 
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better than it actually does.   This phenomenon was demonstrated by Vogel and 

McMartin (1991) when they showed that when constructing an LP3 probability plot, 

sample estimates of the skewness of the logarithms act to create more linear probability 

plots than one would expect, leading one to accept the LP3 alternative more often than 

one should. In other words, Vogel and McMartin (1991) found that LP3 probability plots  

tended to look more linear than they should, leading the analyst to accept the LP3 

model more often than they should, due in part to its extraordinary flexibility and ability 

to ‘adhere to’ or ‘mimic’ the behavior of the observations.   

Goodness-of-fit is about assessing the ability of a model to mimic the observations, 

so that better fit leads to better mimicry of the behavior of the observations. What our 

experiments indicate is that this ‘better mimicry’ of the observations is not necessarily 

consistent with our goal, which is identification of the true underlying parent pdf of a 

flood series.   

 
Figure 3. The Goodness-of-Fit index PPCC based on sample parameters versus PPCC 
using true parameters for the GEV, LP3 and LN3 distributions, based on 100,000 
samples, each of length 100 
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4. THE MOST IMPORTANT NATURAL HAZARD OBSERVATIONS TEND TO CONFOUND 

OUR ABILITY TO SEE THE TRUE MODEL 

The experiments summarized in Figure 3 led us to question the value of the PPCC 

statistic for assessing the ‘goodness-of-fit’ of alternative pdfs to flood samples.  Here we 

explore this issue further with the goal of determining what causes the PPCC goodness-

of-fit statistic based on Q-Q plots to be misleading.  Using the results of the previous 

experiment, Figure 4 plots the average return period of the maximum observation in 

each of the 100,000 generated samples versus the PPCC statistic based on sample 

estimates of the model parameters.  Samples whose largest observations have 

extremely high average return periods tend to have the lowest PPCC values.  Yet these 

samples are the most critical samples in the sense that they exhibit extreme flood 

experience that should be crucial for future flood hazard planning.   Extremely large 

floods lead to very low values of PPCC due to the nature of the PPCC computation.  The 

PPCC based on a Q-Q plot is defined as the correlation between the ordered 

observations and an estimate of the ordered observations based on the fitted pdf.  The 

correlation coefficient is a measure of linearity, which is known to be heavily influenced 

by observed values that are very far away from their fitted counterparts.    When the 

maximum observation happens to have a very small or very large average return period, 

its magnitude tends to be very far away from any of the fitted quantiles based on the 

hypothesized distribution, and exerts large influence on the correlation between 

theoretical and observed quantiles.   
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Figure 4. Average return period associated with maximum sample value (years) versus 
PPCC value based on sample parameters for the GEV, LP3, and LN3 distributions; 
based on 100,000 samples of length 100 

The reduction in values of the PPCC statistic is even more striking when the fitted 

pdf is based on the true model parameters as is shown in Figure 5.  In Figure 5, the PPCC 

values peak in samples that contain a maximum value with an average return period 

which is roughly equal to the length of the samples used to fit the distribution.  Again, 

this is because of the configuration of the Q-Q plot, which allocates n plotting positions 

evenly in probability space.  In this example, the 100th plotting position corresponds 

approximately to the 1 in 100 event, so if such an event exists in the sample, the upper 

right end of the Q-Q plot is fixed near the unity line.  Because this maximum value has 

the greatest leverage in the Q-Q plot, if it is greater or less than the 1 in n event, the 

PPCC value will decline. 
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Figure 5. Average return period of maximum sample value (years) versus PPCC value 
based on true parameters for the GEV, LP3, and LN3 distributions; 100,000 samples of 
length 100 

Figure 6 illustrates the difference between PPCC values generated using sample and 

true theoretical quantiles. As we saw earlier in Figure 3, the PPCC corresponding to the 

fitted pdf is generally greater than the PPCC corresponding to the true pdf.   The 

differences are largest as the exceedence probability of the maximum sample value 

moves in either direction away from the T=100 year =n year event.  In the case of the 

GEV model, for example, the difference in PPCC values can be greater than 0.15 in 

samples that contain observations with very small maximum return periods, and nearly 

0.25 within samples containing the extremely large maximum return periods.  Instances 

where the difference between PPCC values using sample and true parameters are 

greatest correspond directly with samples that contain events we care about most.     

The experiment displayed in Figure 4 indicates that samples containing the largest 

natural hazards tend to perform most poorly from a goodness-of-fit perspective, and in 

Figure 6, that by introducing information about the true properties of these samples, we 

see the largest reductions in goodness-of-fit.  We next inquire into the implications of 

this finding if models are chosen based on goodness-of-fit.  
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Figure 6. Average return period of maximum sample value (years) versus the 
difference in PPCC value based on sample and true parameters for the GEV, LP3, and 
LN3 distributions; 100,000 samples of length 100 

 

 

5. USING GOODNESS-OF-FIT TO CHOOSE AMONG MODELS 

 Given the possibility that goodness-of-fit can be misleading, what are the 

consequences of employing the PPCC goodness-of-fit statistic for selecting among 

candidate probability models?   That is, when using PPCC as a sole criterion for choosing 

a pdf, how often is an incorrect model selected, and how much larger are the quantile 

prediction errors stemming from that selection?   As an illustration, we employ Monte 

Carlo analysis to evaluate how frequently the LP3 model is chosen over GEV when the 

underlying model is GEV.  We generate 100,000 random samples of lengths 15, 25, 50, 

and 100 from a GEV distribution with a fixed set of parameters, and then use the PPCC 

to assess and compare the goodness-of-fit of the fitted GEV and LP3 models.  The GEV 

and LP3 parameters are estimated for each sample using the method of L-moments, and 

then the PPCC values are calculated as the correlation between ordered GEV 

observations and the theoretical quantiles from the GEV and LP3 sample parameters 

(based on the Gringorten and Blom plotting positions, respectively).   This allows us to 
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determine how often the LP3 PPCC value exceeds the GEV PPCC value when we know 

the underlying model is GEV. 

In Figure 7, we plot the difference between PPCC values for GEV and LP3, where 

positive values indicate GEV has better goodness-of-fit than LP3, and negative values 

mean LP3 fits better than GEV.    Regardless of sample length, the LP3 PPCC is higher 

than the GEV values in approximately half of samples.  Thus the incorrect pdf, LP3, is 

selected in 57% of the cases for samples of size 15, but even for sample sizes of 100, the 

pdf is misspecified in 40% of samples.  This suggests that the PPCC goodness-of-fit 

statistic based on a Q-Q plot may not be the most reliable method for choosing a 

probability distribution to model an individual sample. 

 
Figure 7. Boxplots of differences between PPCC of GEV and LP3 based on 100,000 
synthetically generated GEV samples of length 15, 25, 50, and 100 

 

6. RELATIONSHIP BETWEEN DESIGN ERROR AND MAXIMUM SAMPLE VALUE 
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The analysis above suggests that the largest observation in a sample can have a 

profound effect on our ability to discern and/or specify the correct pdf and associated 

parameter values.  Here we further explore how the largest observation can in turn lead 

to systematic prediction errors by investigating the relationship between design event 

prediction errors and maximum sample value.  Again we generated 100,000 samples of 

length n=100 years from the same GEV model used previously.  Figure 8 illustrates the 

percentage error associated with predicting the magnitude of a 1,000-yr event, as a 

function of the average return period of the largest observation (top set of plots) and of 

the PPCC goodness-of-fit statistic (bottom set of plots) for the GEV, LP3, and LN3 pdfs.  

We observe that there is a systematic underestimation in quantile prediction using 

sample estimates of GEV model parameters when the maximum sample value has a low 

average return period and a systematic overestimation when the maximum sample 

value has a high average return period.  Interestingly, there is a less clear relationship 

between the goodness-of-fit metric PPCC and prediction error as is shown in the bottom 

row of graphs in Figure 8.  We conclude from Figure 8 that knowledge of goodness-of-fit 

cannot provide us with warning regarding systematic bias in model predictions.   

Nevertheless, witnessing a flood event with an average return period much larger or 

smaller than the record length n, does provide some warning regarding possible over or 

under design errors, respectively.    
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Figure 8. Average Return Period of maximum sample value (years) versus % quantile 
prediction error (top graphs) and PPCC versus % quantile prediction error (bottom 
graphs) for the GEV, LP3, and LN3 distributions; 100,000 samples of length 100 

In the previous Figures, GEV samples all had fixed values of 𝜅 equal to -0.6.   Figure 9 

expands on the above results for the GEV distribution, by comparing the average return 

period of the maximum sample value and the systematic error associated with the 

estimated 1,000-year design event based on a range of 𝜅 and L-cv values.  On the left 

are results based on sample estimates of GEV model parameters for 𝜅 ranging from -0.6 

to 0.2, and L-cvs ranging from 0.2 to 0.6.  On the right are an identical set of plots, but 

generated assuming the true value of 𝜅 is known.  Knowing the true value of 𝜅 removes 

the bias introduced by the occurrence of maximum sample values that happen to have 

either very low or very high average return periods.   

Figure 8 and Figure 9 indicate that we observe systematic errors in quantile 

prediction when the maximum sample value diverges significantly from the n-year 

return period event, and that witnessing such a divergence may signal possible design 
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errors.  Although we also find that knowing the true value of 𝜅 removes these errors, 

given that in practice, we cannot know the true value of 𝜅, is there an adaptive strategy 

that would reduce the bias in design event estimation introduced by the largest events?   

We next consider this question. 

         
Figure 9. Average Return Period of maximum sample value versus % quantile 
prediction error for the GEV distribution (at-site on left and known 𝜿 on right); 10,000 
samples of length 100 with mean = 1. 

 

7. POTENTIAL ADAPTIVE STRATEGIES TO REDUCE DESIGN EVENT BIAS 

To illustrate the influence of the largest observations and point toward possible 

adaptive strategies, we consider the effect of removing and/or replacing the largest 

observation on bias and root mean square error (RMSE) of design events.   By removing 

the largest observation, we evaluate how bias and RMSE are affected had we not 

witnessed the largest observation and estimated pdf parameters and design events 

using that truncated sample.  We also replace the largest observation with the expected 

value of the largest observation using the Gringorten plotting position in the GEV 

quantile function.     Note that replacing the largest value by its expected  value is 
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analogous to the use of the probability plot regression method for censored 

observations summarized  by Helsel and Hirsch (2002, see chapter 13) and originally 

introduced by Travis and Land (1990). 

Figure 10 displays the results of this inquiry.  The first three bars and boxplots in 

each plot correspond to bias and RMSE associated with estimates of the 100-year flood 

using the at-site (AS) parameters of a GEV pdf based on: (1) the full sample, (2) the 

sample with the largest observation removed, and (3) the sample with the largest 

observation replaced by its expected value.  These three cases are denoted AS-AS, Omit-

AS, and Rep-AS, respectively in Figure 10.  The second set of three bars and boxplots in 

Figure 10 are the same cases, except using the known value of 𝜅 in all estimates which 

we term AS-KK, Omit-KK, and Rep-KK, respectively.  Figure 10 illustrates clearly that both 

bias and RMSE associated with the design event increases dramatically due to sampling 

that results from estimating all three GEV model parameters.  Dropping the largest 

observation leads to reductions in RMSE, but increases bias considerably—this is not an 

attractive alternative.  Replacing the maximum observation with its expectation, further 

improves RMSE, but still increases bias somewhat relative to the estimation with the full 

sample.  A refined version of this alternative, following an approach similar to that 

recommended by Cohn et al. (2013) to detect and remove low outliers, may be 

appealing when RMSE is the primary concern.   

On the other hand, knowing the true value of 𝜅 greatly reduces both bias and RMSE 

associated with design event estimates.  Our conclusion based on the figures above and 

below is that although some adaptive strategy involving replacement of the largest 

observation(s) may have promise, generating better estimates of 𝜅 using regional 

methods is likely to be the best approach forward for reducing both bias and RMSE 
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associated with design events.  This further underscores recommendations in the 

existing body of research to ‘substitute space for time’ by using hydrologic records at 

different locations to compensate for short records at a single site (IAWCD 1982, 

Cunnane 1988, Stedinger et al. 1992, Griffis et al. 2004, Griffis and Stedinger 2009).   

   

 
Figure 10. The effect of removing the largest observation (Omit) and replacing the 
largest observation with its expected value (Rep) on bias and RMSE of 100-year design 
event magnitude when estimation uses all at-site (AS) parameter estimate, and 
known 𝜿 (KK) 

 

8. CONCLUSIONS AND RECOMMENDATIONS 

We document systematic bias associated with the widely used PPCC goodness-of-fit 

metric.  Monte Carlo experiments indicate that the value of the PPCC statistic, based on 

Q-Q plots: (a) declines when we introduce additional information about the true 

underlying statistical model and (b) is lowest for those samples that contain exactly the 
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extreme events that we are trying to model.  Owing to these issues, we find that 

goodness-of-fit may not be the most reliable metric for choosing a probability 

distribution to model an individual sample.  These findings highlight the fact that 

goodness-of-fit is assesses the ability of a model to mimic the observations, so that 

better fit leads to better mimicry of the behavior of the observations.  This ‘better 

mimicry’ of the observations is not necessarily consistent with our goal, however, which 

is identification of the true underlying parent pdf of a flood series so that we can 

accurately predict quantiles, such as the 1000-year flood.   

Further experiments lead us to observe systematic errors in quantile prediction 

when the maximum sample value diverges significantly from the n-year return period 

event, and to observe that witnessing such a divergence may provide a warning of 

possible design errors.  We attempt two adaptive strategies, and find that although an 

approach involving replacement of the largest observation(s) may have promise, 

particularly in reducing RMSE, generating better estimates of 𝜅 using regional methods 

is likely to be the best approach forward for reducing both bias and RMSE associated 

with design events.   

Overall, we seek to select the probability model that best represents the true 

relationship between the frequency and magnitude of our observations.     The most 

effective way to do this is through hypothesis tests, which allow us to reject, or 

invalidate, a model with a chosen degree of confidence.  Such hypothesis test have been 

developed for two parameter distributions (e.g., Stedinger et al. 1992), but few are 

available for the three parameter distributions used most widely in natural hazards 

analysis and in many other fields.  Even those hypothesis tests which are available for 

three parameter pdf’s such as for the LP3 hypothesis (Vogel and McMartin 1991) and 
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for the GEV hypothesis (Chowhurdy and Stedinger 1991), such tests lack power due to 

the need to estimate the third shape parameter of the pdf, in practice.  Goodness-of-fit, 

evaluations are not the only alternative to hypothesis tests.   For example, Laio et al. 

(2010) use a test that evaluates whether the maximum value in a sample is consistent 

with the hypothesis that a given distribution is the parent distribution to validate the 

statistical model in question.  This approach can be particularly useful in contexts where 

the largest values are the most relevant observations, such as in flood frequency 

analysis.  In a recent study, Renard et al. (2013) introduce a data-based comparison 

framework for pdf evaluation that emphasizes predictive ability and stability over 

goodness-of-fit.   If multiple sites are being evaluated within the same geographic 

region, then Multiple Comparison Procedures (MCPs) can be used to test the hypothesis 

of a shared distribution across multiple samples. For a review of MCP’s applied to the 

selection of a regional pdf of natural hazards, see section 6 of Thompson et al. (2011) as 

well as section 6 of Vogel et al. (2009).  Lastly, if goodness-of-fit must be used, then a 

more reliable alternative may be to use P-P plots to calculate PPCC statistics rather than 

Q-Q plots (Gen and Koehler 1990). 

In P-P plots, the percentiles associated with each of the ranked observations 

computed from the fitted pdf are  plotted against the their unbiased plotting positions,  

The PPCC statistic based on a P-P plot is the correlation between these two axes, both of 

which have values between 0 and 1.  Using PPCC statistics based on P-P plots treats each 

observation with effectively equal weight, and as a result, is influenced far less by 

outliers than a PPCC based on a Q-Q plot.  Figure 11 compares our original boxplots of 

PPCC statistics using Q-Q plots shown previously in Figure 2 above with the equivalent 

set of PPCC statistics based on P-P plots.  Recall here that each value of PPCC is 
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computed from one of the relatively long flood records at 200 rivers considered by 

Hirsch and Ryberg (2012).  We note in Figure 11  that for all probability distributions, the 

1,000-year events are much more evenly spaced across the range of PPCC values based 

on P-P plots, suggesting a more balanced assessment of the goodness-of-fit of a 

hypothesized pdf.     

 
Figure 11. PPCC using Q-Q versus P-P probability plots for five distributions. Each 
boxplot includes 200 stations.  Circles are outliers, and triangles are events with 
greater than 1,000-year return periods.  GEV is Generalized Extreme Value; “Gum” is 
Gumbel; “LN2” is 2-parameter lognormal; “LN3” is 3-parameter lognormal; and 
“LP3”is Log-Pearson Type III. 
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ABSTRACT 

One way to evaluate whether a scientific hypothesis is consistent with observations is to 

determine whether the data are concordant with that hypothesis from several 

perspectives.  For a hypothesis to be consistent, it must exhibit concordance with 

observed data across space, time, as well as across functional transformations.  We 

focus on the problem of selecting a probability distribution for modeling natural hazards 

that exhibits transformational concordance with observed data.  A data series is 

transformationally concordant if its properties under each transformation (e.g., real 

space to log space) are consistent with our theoretical understanding of how those 

properties change across transformations.  For example, in real space, if a sequence of 

observations is assumed lognormal and if logarithms exhibit zero skewness, the 

lognormal distribution in real space and the normal distribution in log space would be 

transformationally concordant.   Using 200 long flood records in the U.S., we explore the 

transformational concordance of the Generalized Extreme Value (GEV) distribution.  If 

observations are GEV, then their adjusted logarithms should follow a Gumbel pdf.   The 

GEV pdf exhibited the best goodness-of-fit among several alternative pdfs for the 200 

flood series using traditional metrics.  However, the flood series were found to be 

transformationally discordant under the GEV hypothesis, and the GEV model was found 

to significantly underestimate the frequency of extremely large design events. Both the 
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discordance and design event bias appear to be attributable to systematic bias in GEV 

parameter estimation that is largely addressed by application of regional skew 

estimates.  We identify the potential for a GEV hypothesis test based on 

transformational concordance.  
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1. INTRODUCTION 

Determining whether a scientific hypothesis is consistent with observations is a 

fundamental step in developing any mathematical model.  One way to evaluate 

consistency of a particular hypothesis is to determine whether the data are concordant 

with that hypothesis from several perspectives.  We call this notion concordance.  For a 

hypothesis to be consistent, it must exhibit concordance with observed data across 

space, time, as well as across functional transformations, which we term 

transformational concordance.  In this initial study, we focus on the problem of selecting 

a probability distribution for modeling natural hazards that is transformationally 

concordant with observed data.  Appendix A introduces other forms of concordance, 

which may be useful in future investigations.   

In all fields of natural hazards, the problem of estimating the magnitude of a design 

event and its associated frequency of occurrence is of basic concern.  Estimation of 

these metrics requires hypothesizing a particular probability density function (pdf) and 

then evaluating the consistency of that pdf with observed data.  Because of their 

flexibility, three-parameter pdfs are typically employed to model natural hazards, and 

several approaches have been advanced for evaluating alternative hypotheses for these 

pdfs.  Hypothesis tests have been developed for some three-parameter pdfs including 

the log Pearson type III (LP3) (Vogel and McMartin 1991) and GEV (Chowhury and 

Stedinger 1991) hypotheses, although the need to estimate the third shape parameter 

of the pdf from data series limits the power of such tests.  For example, Vogel and 

McMartin (1991) document that even though the third parameter of the LP3 

distribution (log skew) can improve the apparent ‘goodness-of-fit’ of resulting 

probability plots over alternative pdfs, that ‘goodness-of-fit’ is misleading, because the 
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resulting test often failed to detect departures from the LP3 model for the sample sizes 

typically experienced in hydrologic applications.  Similar experiences led Boehlert (2015) 

to conclude that ‘goodness-of-fit’ can mislead us to select probability models and 

parameter estimates that perform poorly in producing the results we care about most in 

frequency analysis, such as the magnitude and average return period of design flood 

events.  The maximum value test (see Laio et al. 2010), evaluates whether the maximum 

value in a sample is consistent with the hypothesis that a given distribution is the parent 

distribution.   In regional applications, many hypothesis tests are applied repeatedly 

resulting in a regional hypothesis test; this idea was first introduced to the climate and 

hydrology literature by Livezy and Chen (1983) using the concept of field significance.  

The concept of field significance is more generally termed Multiple Comparison 

Procedures (MCP) by statisticians.     Thompson et al. (2011) and Vogel et al. (2009) 

provide an introduction, review and application of the use of MCPs and field significance 

for use in natural hazards applications, and Douglas et al. (2000) show the importance of 

accounting for spatial correlation of flow series when performing repeated distributional 

hypothesis tests.  Yet another approach for evaluating three-parameter pdfs was 

introduced by Renard et al. (2013), who advance a data-based comparison framework 

for pdf evaluation that emphasizes predictive ability and stability over goodness-of-fit.    

We introduce and evaluate the concept of transformational concordance, which 

holds promise for gaining insight into the true statistical properties underlying a given 

dataset.  A data series is transformationally concordant if its properties under each 

transformation (e.g., real space to log space) are consistent with our theoretical 

understanding of how those properties change across transformations.  For example, in 

real space, if a sequence of observations is presumed to be distributed as lognormal and 
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if the logarithms of the observations yield zero skewness, the skewness would not 

contradict the normal distribution and therefore, the lognormal distribution in real 

space and the normal distribution in log space would be transformationally concordant.  

On the other hand, if the logarithms of the observations yield significantly non-zero 

skewness, then the two distributions would be transformationally discordant, indicating 

that the original data may not be lognormally distributed. 

The broader concept of concordance has been applied in a range of fields to 

evaluate particular scientific hypotheses.  For instance, in disciplines that require 

aggregation of ranks from different sources, concordance describes the agreement 

between n ranks of k objects (e.g., different judges evaluating a set of competitors); one 

measure of such agreement is the concordance correlation coefficient (Lin 1989).  In 

biology, ecology, and other physical sciences, spatial concordance measures the degree 

to which the spatial pattern of a particular driver predicts the spatial pattern of some 

outcome (see Garcia et al. 2005).  To measure these relationships, ecologists have 

applied the Kendall coefficient of concordance to evaluate species associations in 

community ecology (see Legendre 2005).  In the more relevant context of natural hazard 

frequency analysis, researchers have used the concept of concordance to describe the 

degree of correlation between the flow sequences of two or more converging rivers and 

other correlations between hydrological variables (see Favre et al. 2004).  Hosking and 

Wallis (1997) describe a “discordancy measure” that identifies sites that are grossly 

discordant with the group as a whole, where discordancy is measured based on L-

moments of the sites’ data. 

In this initial study, we focus on the transformational concordance of the 

Generalized Extreme Value (GEV) distributional hypothesis.  GEV is a three-parameter 
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distribution used widely for analysis of natural hazards, and for flood frequency analysis 

(see Renard et al. 2013, Villarini et al. 2011/2012, Gubavera 2011, Salinas et al. 2013).   

Note that the U.S. is one of the only nations that does not use the GEV model and 

instead mandates the use of the LP3 distribution for use in flood frequency analysis (see 

Bulletin 17B [IACWD 1982] and Table 3 in Vogel and Wilson 1996).  As described further 

below, if a data series is distributed as GEV, then its logarithms (adjusted by its upper or 

lower bound) follow a Gumbel pdf (i.e., Extreme Value Type I).  As a result, if a dataset is 

transformationally discordant between GEV in real space and Gumbel in log space, that 

dataset is either not GEV distributed or the estimated GEV parameters used to calculate 

the lower/upper bounds are incorrect. 

We explore the concept of transformational concordance in flood frequency 

analysis using a dataset of annual maximum streamflow from 200 stream gages 

operated by the U.S. Geological Survey (USGS) within the contiguous U.S.  Each of these 

series is at least 85 years in length through water year 2008, and is within “unmanaged” 

drainage basins that have few or no reservoirs, water withdrawal intakes, or other water 

infrastructure development (see Figure 12).  Hirsh and Ryberg (2012) provide additional 

details on this dataset as well as further explorations concerning their stationary 

behavior.   Throughout our analyses, we employ the method of L-moments (Hosking 

1990, Hosking and Wallis 1997) for fitting pdfs to these and other flood series. 
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Figure 12. Locations of 200 USGS station with annual maximum flow data, introduced 
by Hirsh and Ryberg (2012) 

In the remainder of the paper, we provide a brief introduction to the theory of 

transformational concordance, evaluate the transformational concordance of the Hirsch 

and Ryberg (2012) annual maximum flow dataset, and then examine the source of 

apparent discordance we find in that evaluation.  We further explore the 

transformational concordance concept to explain apparent systematic bias in the 

frequency of extreme floods when fitting the GEV distributions. 

 

2. TRANSFORMATIONAL CONCORDANCE: THE CASE OF THE GEV DISTRIBUTION 

There is general consensus among hydrologists that sequences of annual floods are 

well described by one or another of the three asymptotic distributions of the largest 

value. These distributions may be compactly represented in the form of a generalized 

extreme value (GEV) distribution formulated by Mises (1936) and subsequently utilized 

by Jenkinson (1955) to investigate meteorologic extremes.  Since then, the GEV 

distribution has found application to numerous other natural hazards, including 
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earthquakes (Pisarenko et al. 2014, Thompson et al. 2012), floods (Renard et al. 2013, 

Villarini et al. 2011/2012), droughts (Sousa et al. 2011), and drought and flood stages of 

lakes (Paynter and Nachabe 2010).  Its cumulative distribution function may be 

expressed as: 

( ) ( )[ ]κτ 11exp yyYF −−=<  (1) 

where 

( ) αε−= xy  (2) 

where ε  and 0>α  are parameters of location and scale and κ is the shape parameter.  

As 0→κ , Eq. (1) tends to the Type 1 extreme value distribution or Gumbel pdf, 

 (3) 

The distribution is unbounded below and above, , and has a fixed value of 

skew, 139.1=γ .  If 0<κ , Eq. (1) corresponds to the Type II extreme value 

distribution, 

( ) ( )[ ]κ−−=< yyYF exp  (4) 

The distribution is bounded below but not above, ∞≤≤ yκ1 .  If 0>κ , Eq. (1) 

corresponds to the Type III extreme value distribution also referred to as the Weibull 

pdf,  

( ) ( )[ ]κyyYF −−=< exp  (5) 

The distribution is bounded above but not below, κ1≤<∞− y .   

If X  is distributed as Type II, then  

 (6) 
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is distributed as Type I, and likewise, if X   is distributed as Type III, then 

( )XmZ −−= ln  (7) 

is distributed as Type I. See e.g., Johnson and Kotz (1995).  The lower bound m is defined 

as: 

𝑚 = 𝜀 + 𝛼
𝜅

                    

(8) 

And ε, α, and 𝜅 are the three parameters of the GEV distribution.   In real space, let 

{ }nixi ,...,1: =  represent a sequence of annual peak streamflows spanning a period of 

n years. The sequence may be fitted to a generalized extreme value (GEV) distribution 

using various approaches including the method of moments and L-moments (Stedinger 

et al. 1992) or maximum likelihood estimators introduced by Martins and Stedinger 

(2000).  If in log space, there is no contradiction in the shape of the distribution and the 

shape implied by the sequence ( ){ }nimxz ii ,...,1:ln =−= , then the generalized 

distributions in real space and in log space and the associated GEV hypothesis are 

transformationally concordant. 

In real space, if the skewness estimated from the sequence { }nixi ,...,1: =  is 

positive, then the sequence may be fitted with the GEV distribution, whether 𝜅 < 0 

(Type II EV distribution) or 𝜅 > 0  (Type III EV distribution). And if in log space, the 

skewness estimated from ( ){ }nimxz ii ,...,1:ln =−=  is positive, then the GEV 

distributions in real and in log space are concordant if skewness in log space is in the 

neighborhood of 1.139, the skewness of the Type I EV distribution, equivalently the GEV 

distribution with 𝜅 = 0. If, however, the skewness in log space is outside the 
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neighborhood of 1.139, then the GEV distributions in real and in log space are 

discordant. 

In real space, if skewness is negative, the observations may be fitted with the Type 

III EV distribution, equivalently the GEV distribution for which 𝜅 > 0. Note that the Type 

III EV distribution may be positively or negatively skewed. In either case, the distribution 

is bound above and unbounded below. Unless the skewness in log space is in the 

neighborhood of 1.139, the GEV distributions in real space and in log space are 

discordant. 

Whether the skewness in real space is positive or negative, the sequence in log 

space cannot be fitted with a GEV distribution if the skewness in log space is negative. In 

this case, the GEV distributions in real space and in log space are discordant. 

 

3. GOODNESS-OF FIT OF GEV DISTRIBUTION FOR U.S. ANNUAL MAXIMUM FLOOD 

DATA 

We begin our evaluation of the GEV hypothesis by using traditional goodness-of-fit 

metrics to assess whether the GEV model mimics U.S. flood observations.   Figure 13 

illustrates L-moment diagrams which enable us to compare the behavior of several 

theoretical pdfs (shown using curves) with sample L-moments computed from the 200 

flood series.  See Hosking (1990), Vogel and Fennessey (1993), Stedinger et al. (1992) 

and Hosking and Wallis (1997) for a review of the application of L-moment diagrams for 

assessing the goodness-of-fit of alternative pdfs to flood samples.  Based on a 

comparison of  the estimated  L-skewness and L-kurtosis of the 200 stations  the 

theoretical relationship for a GEV, three parameter lognormal (LN3) and a three 

41 
 



 

parameter Pearson (PE3) distribution in Figure 13, the GEV model appears to provide a 

good fit to the data.  As expected from other assessments of suitable pdf’s for modeling 

observed flood series (Vogel and Wilson 1996, Kidson and Richards 2005, El Adlouni et 

al. 2008, Gubavera 2011), we conclude from Figure 13 that the GEV, LN3 and PE3 pdfs 

are all consistent with flood experience on these 200 U.S. rivers. 

 
Figure 13: L-moments of annual maximum streamflow dataset 

In addition to L-moment diagrams as measure of goodness-of-fit, we considered the 

linearity of probability plots based on various hypothesized pdfs.     We evaluated the 

Probability Plot Correlation Coefficient (PPCC) using quantile-quantile (Q-Q) probability 

plots for the 200 stations.  The PPCC statistic is the correlation between the ordered 

observations versus estimates of the expectation of those ordered observations based 

on a hypothesized fitted pdf. Such probability plots and associated PPCC goodness-of-fit 

comparisons are now widely used in the field of hydrologic frequency analysis 

(Stedinger et al. 1992, Vogel 1986, Vogel and McMartin 1991 and Heo et al. 2008).   A 

determination of the expected value of the ordered observations based on a fitted 

distribution used to compute the PPCC is based on a plotting position chose to 
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reproduce the expected values of the order statistics for the hypothesized pdf, along 

with the quantile function and set of model parameters.    Figure 3 illustrates  PPCC 

goodness-of-fit statistics for the following distributional alternatives: GEV, Gumbel 

(Gum), 2-parameter lognormal (LN2), LN3, and Log Pearson Type III (LP3), all based on 

at-site  parameter estimates using the method of L-moments.  The mean PPCC value for 

the GEV pdf was higher than for the other four distributions, at approximately 0.99 as 

shown in Figure 14, thus we conclude that among the five pdf’s considered in Figure 14, 

the GEV model exhibits the best overall goodness-of-fit.   

 
Figure 14: Boxplots of PPCC values of the 200 annual maximum flow series fit to 
various distributions 

Although both L-moment diagrams and PPCC goodness-of-fit evaluations suggest 

that the GEV pdf fits the datasets well, we found that the GEV does a poor job of 

estimating the frequency of extremely large events.  In the 200 flood series, each 

ranging in length from 85 to 126 years (average length 94.2 years), there is a total of 

approximately 19,000 site-years of observations.  If all these observations are assumed 

to be independent in both space and time, among the 19,000 site years of data, we 

would expect to observe about 19 (0.1%) flood observations which exceed our estimate 

of the 1,000 year flood using a GEV model.  The number 19 is also a random number 
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with a distribution that follows a Bernoulli pdf, enabling us to compute the likely range 

associated with this random variable.  Equation (2) of Vogel et al. (1993a) documents 

how to construct the likely range associated with this random variable assuming spatial 

and temporal independence of the flood samples.  Here the 95% likely range of events 

which would be expected to exceed the 1,000-year flood is from 12 to 26 events.   If one 

accounted for the weak temporal and spatial correlation of these flood series using 

methods described by Matalas and Langbein (1962), the likely range would likely 

increase slightly, because spatial and temporal correlation are analogous to decreasing 

the effective sample size associated with this experiment.    

Beard (1977) and Vogel et al. (1993a/b) performed similar analyses using three 

different datasets, where they counted the number of times actual streamflow 

observations exceeded estimates of  the 1,000-year flood , although Beard did not 

consider the GEV distribution.  Vogel et al. (1993a)  focused on the southwestern U.S. 

and found  that the number of observations which exceeded GEV estimates of the 

1,000-year events using no expected probability adjustment fall within, but at the 

bottom of, their 95% likely intervals of 11 to 28 events.  In an analysis of Australian flood 

frequency, Vogel et al. (2013b) find that 17 GEV estimates of the 100-year event occur 

when their 90% likely interval is 13 to 26.  In our analysis, on the other hand, only six 

observed floods exceeded the GEV estimates of the 1,000-year floods based on a GEV 

model, suggesting that the magnitude of extreme design events are systematically 

overestimated when fitting a GEV model using at-site L-moment estimators of the 

model parameters.  Note that these estimates do not incorporate an expected 

probability adjustment (Stedinger, 1983) which has currently only been derived for the 

normal distribution.  According to the findings of Stedinger (1983), without an expected 
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probability adjustment, one would expect the number of exceedances of a sample 

estimate of the 1,000-year flood to be greater than our expectation.  As such, 

incorporating an expected probability adjustment in our context would actually 

decrease the already-underestimated frequency of 1,000-year events.  In the following 

sections, we further explore the inconsistency between the fact that among various 

plausible pdfs considered, the GEV model appears to exhibit the highest goodness-of-fit, 

yet cannot reproduce the frequency of large flood events. 

 

4. TRANSFORMATIONAL CONCORDANCE OF U.S. ANNUAL MAXIMUM FLOOD DATA 

Our previous goodness-of-fit evaluations based on L-moment diagram and 

probability plots led us to conclude that the GEV model is consistent with U.S. flood 

observations.  Now we evaluate whether the flood series exhibit transformational 

concordance under the GEV hypothesis.  If concordant, then the L-moment diagram of 

transformed data given in equations (6) and (7) should have L-skew and L-kurtosis 

values that fall within the neighborhood of the theoretical Gumbel values of 0.17 and 

0.15, respectively.  Here the neighborhood is an elliptical region centered at this point, 

the size of which is specified based on desired level of confidence and sample size (see 

Chapter 3 of Hosking and Wallis 1997 and Liou et al. 2008).  Figure 15 illustrates these 

elliptical regions for 10,000 synthetically-generated Gumbel series each of length n = 15, 

25, 50 and 100.  The elliptical region encloses 95% of the points, and thus constitutes 

the 95% confidence region for the L-moment ratio estimates derived from Gumbel data. 
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Figure 15: 95% confidence ellipses which define the expected neighborhood for 
estimates of L-skew  and L-kurtosis for Gumbel samples of length n= 15, 25, 50, and 
100 

To investigate the transformational concordance of the USGS annual maximum flow 

observations, we first used the method of L-moments to estimate the GEV parameters 

for (a) the full datasets, and (b) a truncated set of the data containing only the first 10 

and 25 observations of each series.  Recall that if X is GEV then the transformation Z 

given in equation (6) and (7) should follow a Gumbel pdf.  We transform the observed 

time series X to Z using at-site L-moment estimates of the GEV parameters to estimate 

the lower/upper bound m (equation 8).  If concordant, the transformed series should 

fall within the neighborhood of the Gumbel distribution illustrated earlier in Figure 4. 

Figure 16 illustrates L-moment diagrams for the values of Z, which do not look anything 

like the expected behavior we saw in Figure 15.  We conclude from Figure 16 that either 

(a) the observed flood series are not concordant with the GEV hypothesis, or (b) 

sampling variability associated with parameter estimates is occluding our ability 

evaluate the GEV hypothesis. 
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Figure 16: L-skewness versus L-kurtosis of values of Z corresponding to annual 
maximum flood data; sample sizes of 10, 25, and 85-126 

 

5. SOURCE OF DISCORDANCE IN GEV DATA: PARAMETER ESTIMATION 

In this section, we explore the possible reasons for the apparent GEV discordance 

illustrated in the previous section.  We hypothesized that the discordance was caused 

by at-site estimates of 𝜅, as the literature has long-recommended using regional 

estimates of shape parameters to effectively lengthen sample records using data from 

other sites (see Bulletin 17B [IACWD 1982], Stedinger and Lu 1995, Reis et al. 2005, and 

Griffis and Stedinger 2009).  Figure 17 compares L-moment diagrams for the 200 

stations using at-site parameter estimates based on the method of L-moments (A; at 

left), at site ε and α estimates but regional estimates of  𝜅 (B; at center), and synthetic 

data generated from the 200 sets of at-site GEV model parameters that by definition 

have no parameter uncertainty and therefore known lower bounds (C; at right).  For the 

purposes of this study, each regional 𝜅 estimate is simply the average of at-site 𝜅 values 

that fall within a common 4-digit USGS hydrologic unit code (HUC; there are 204 4-digit 

HUCs in the contiguous U.S.).  When we used the regional instead of at-site 𝜅 value in 

calculation of the lower bound, the resulting data pattern (B) is much more elliptical and 

thus more consistent with the theoretical results observed in Figure 15.  Using synthetic 
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data (C) when the values of 𝜅 are assumed known apriori, produce the ellipses as 

expected.  Figure 18 illustrates the variability in sample estimates of the shape 

parameter 𝜅.  Not surprisingly, at-site L-moment estimates of the  𝜅 values for the 10- 

and 25-year truncated records vary widely, whereas the at-site and regional values that 

rely on the complete series are much more tightly bound between approximately -0.5 

and 0.2.   

 
Figure 17. Comparison of L-moments of the values of the transformed GEV variate Z 
based on at-site (A), regional (B), and true values of 𝜿 (C). The At-site and regional 
results are based on U.S. flood series and the synthetic results are based on synthetic 
GEV samples with known parameters. 

 
Figure 18: Boxplots of at-site and regional 𝜿 values for truncated and full sample 
series 

Figure 17 indicates that the source of the apparent discordancy between the 

theoretical GEV model and U.S. flood series lies in our estimate of 𝜅, which dictates how 

to transform the observations X into the transformed GEV series Z.  That figure also 

A B C 
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demonstrated that when the uncertainty in the 𝜅 value is resolved (either using regional 

estimates or if one actually knew the true value), the apparent GEV discordancy 

disappears.  Yet sample lengths 85-126 should be sufficient to avoid significant bias in 

at-site shape parameter estimates.  In recent formulations of the weighted estimate of 

the shape parameter (blend of at-site and regional), the at-site value dominates the 

weighting when sample lengths exceed 60-75 (Stedinger and Lu 1995 focus on GEV; 

Griffis and Stedinger 2009 focus on LP3).  This suggests that at-site parameter estimates 

from these large samples should avoid the discordance observed in Figure 17.    

To test whether the GEV discordancy resolves itself with large sample sizes, we 

generated 1,000 samples of length 10,000, each of which has mean of 1 and L-cv of -0.4 

and 𝜅 values varying from -0.6 to 0.4.  In Figure 19, the title of each subplot shows the 

percentage of the 1,000 runs with estimated lower bounds m that were larger than the 

smallest observation, or upper bounds m, that were smaller than the largest 

observations—these cases were omitted.  In each plot the gray points are transformed 

using known values of parameters, whereas black points are transformed using at-site 

parameter estimates based on method of L-moments.  Figure 19 suggests that even 

when relying on exceptionally large sample sizes for at-site parameter estimation, we 

still observe transformational discordance.  For 𝜅 < 0.2, we observe strong correlation 

between L-skewness and L-kurtosis, and too little variance in L-skewness, particularly as 

𝜅  0.  Although the source of this discordance is a matter for further research, given 

that these large sample sizes effectively eliminate sampling uncertainty, the result in 

Figure 19 may be caused by some fundamental aspect of the parameter estimation 

procedure.  In the next section we explore how the variability in the GEV shape 

parameter can also produce systematic bias in design flood estimates. 
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 Figure 19. L-moment diagrams for transformed GEV data using known and at-site 
parameters to estimate lower bound; 1,000 runs of n =10,000. Gray points are 
transformed to log space using known parameters, whereas black points are 
transformed using at-site parameters. 

 

6. GEV SHAPE PARAMETER ESTIMATION ERRORS LEAD TO SYSTEMATIC BIAS IN 

DESIGN FLOODS  

In the previous sections we document how the sampling variability associated with 

at-site estimates of the GEV shape parameter 𝜅 can prevent us from understanding the 

true underlying probabilistic structure of the observations of interest. These 

investigations led us to conclude that U.S. flood observations appear discordant with the 

GEV model in spite of the fact that standard goodness-of-fit metrics led us to conclude 

50 
 



 

that the GEV model is preferred over other 3-parameter alternatives.  We now examine 

the bias associated with design flood estimates from the sampling uncertainty in at-site 

estimates of 𝜅.  Recall that across 19,000 site-years of flood data from the USGS dataset, 

only six observations were found to exceed the 1,000-year event predicted using GEV 

at-site L-moment estimates of model parameters.  If the flood series were temporally 

and spatially independent, we would have expected 19 such exceedances (95% likely 

interval: 12 to 26).   Thus a GEV model fitted to relatively long hydrologic records (the 

average record length is 94.2 years) using at-site parameter estimates will generally 

underestimate the frequency of very extreme design events.  

To further evaluate the potential implications of this finding, we generated 10,000 

GEV samples of length 100 each for 100 sets of 𝜅 values which ranged from -0.6 to 0.4 

at an interval of 0.01 (excluding 0).  Thus for each value of 𝜅 considered, we generated 

(10,000 x 100 = 1,000,000 site years of floods).   As in our previous analyses, the L-cv and 

mean for each data series is set at 0.4 and 1, respectively.  For each sample, we 

estimated the at-site parameters and the magnitude of the 1,000-year return period 

event based on L-moment estimators of (a) at-site parameters, and (b) at-site α and ε, 

but known 𝜅.  We then counted the number of observations which exceeded an event 

with an estimated 1,000-year return period, which we would expect would be 

approximately 1,000 events (i.e., 0.1% of the 1 million site-years of observations).  

Figure 20 displays these results.  When using the known value of 𝜅 for design event 

estimation, the number of observations which exceeded the estimated 1,000-year 

events matches our expectation nicely (black points).  On the other hand, using the at-

site L-moment estimator of 𝜅 to estimate the 1,000 year design event from synthetic 

GEV samples tended to produce either too many extreme flood events (for 𝜅 > 0.15) or 
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too few (for 𝜅 < 0.15).  Given that the interquartile range of the L-moment estimates of 

at-site 𝜅 values for the 200 stations is approximately -0.05 to -0.25, the mean of this 

range corresponds to approximately 300 flood events, or 30% of the flood observations 

expected to exceed the 1,000-year flood.  This is very similar to the 6 versus 19 actual 

flood events (31%) which exceeded estimates of the 1,000 year flood in our previous 

analysis using the Hirsch and Ryberg (2012) dataset.  We conclude from this experiment 

that at-site estimation of the GEV shape parameter, even using reasonably long records, 

may cause systematic bias in flood frequency estimates.   

        
Figure 20. Number of GEV observations which exceeded the estimated 1,000-year 
return period event as a function of 𝜿 for the GEV distribution; 10,000 samples of 
n=100 yield a total of 1,000,000 years of observation from which we would expect  
1,000 events to exceed our estimate of the 1,000-year return periods design event..  
Black points are calculated using a known 𝜿 value, and gray points are based on at-site 
L-moment estimators of 𝜿. 

 

7. TRANSFORMATIONAL CONCORDANCE: A POSSIBLE AVENUE FOR HYPOTHESIS 

TESTING? 
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Finally, we explore the potential for using the concept of transformational 

concordance to develop a hypothesis test.  Figure 15 illustrated 95% confidence ellipses 

for L-moment diagrams corresponding to the Gumbel hypothesis for various sample 

sizes.  If X is GEV then the transformation Z should follow a Gumbel pdf. If all or a 

significant portion of the estimated L-moments of the values of  Z fall outside of that 

ellipse, we would have strong evidence that the real-space data X is not GEV thus 

providing a possible test for the GEV hypothesis.  To illustrate this concept, we 

synthetically generate samples of GEV and LP3 data of various sample sizes, and then 

we obtain L-moment sample estimates of the GEV model parameters which we use to 

estimate the lower and upper bounds m (equation 8) followed by computation of the 

transformed value of Z given in equations (6) and (7).  Our expectation is that for 

modest sample sizes of LP3 synthetic data the L-moment diagrams for the transformed 

value Z will lead to estimated L-moments which fall squarely outside of the 95% 

confidence ellipse derived from Gumbel synthetic data.  We find that the estimated L-

moments of the estimated values of Z computed from LP3 data do indeed fall outside of 

the Gumbel ellipse, but only when using exceptionally long sample lengths as is shown 

in Figure 21.  This suggests that there is potential for developing a GEV hypothesis test, 

but further development is needed to make such a test applicable to the much smaller 

sample sizes typically available.  Such a hypothesis test could draw on goodness-of-fit 

tests for acceptance regions in L-moment diagrams developed  by Liou et al. (2008), as 

well as measures of spatial homogeneity commonly used in GIS applications. 
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                        GEV Data, At-Site Parameters          GEV Data, Known 
Parameters 

 
                        LP3 Data, At-Site Parameters          LP3 Data, Known 
Parameters 

 
Figure 21. L-moment diagrams of the transformation Z estimated from synthetically 
generated GEV and LP3 for  sample sizes equal to, n = 25, 100, 1,000, and 10,000.  Left 
plots use at-site parameters for estimation of Z; right plots use known parameters. 

 

 

 

8. CONCLUSIONS 
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We have introduced the concept of transformational concordance and applied it to 

better understand the ability of the GEV model to mimic the probabilistic behavior of 

both observed and synthetic flood data.  In our initial evaluations of the 200 annual 

maximum flow records, we find that although GEV performs exceptionally well from a 

goodness-of-fit perspective, using at-site parameter estimates greatly underestimates 

the occurrence of the large events we care about most in flood frequency analysis.  We 

then find that the 200 stations do not exhibit transformational concordance, concluding 

that either (a) the observed flood series are not concordant with the GEV hypothesis, or 

(b) sampling variability associated with parameter estimates is preventing us from 

evaluating the GEV hypothesis.  We attribute both the discordance and errors in design 

event occurrence to systematic errors in estimation of the shape parameter 𝜅 of the 

GEV pdf.   

Discordance appears to be considerably resolved by using regional 𝜅 estimates, 

underscoring recommendations from the body of literature to ‘substitute space for 

time’ by using hydrologic records at different locations to compensate for short records 

at a single site (IAWCD 1982, Cunnane 1988, Stedinger et al. 1992, Griffis et al. 2004, 

Griffis and Stedinger 2009).   In most previous investigations, use of a regional estimate 

of 𝜅 for the GEV distribution or a regional estimate of skewness for the LP distribution 

have been advocated for the purpose of reducing the variance of estimates of the 

design event (Griffis and Stedinger 2009).  Our findings indicate considerable bias in the 

design event may result when only at-site estimates are used, even when using long 

record lengths for parameter estimation. 
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9. FURTHER RESEARCH 

Further research should address several issues that remain unresolved here.  First, 

as the true value of 𝜅 for synthetically generated data series nears zero (i.e., GEV 

approaches Gumbel), why do at-site estimates of the parameters of those series result 

in transformed values Z which exhibit exactly the theoretical Gumbel L-skew in  as 

shown in Figure 15?  Second, what is the cause of the systematic parameter estimation 

errors that appear to explain the underestimation of design floods resulting from a 

fitted GEV pdf and what is the actual role of those errors in driving the underestimation?  

Lastly, further research should explore the usefulness and feasibility of constructing a 

hypothesis test based on transformational concordance.   Such a test could draw on 

spatial homogeneity metrics commonly used in spatial statistics and cluster analysis.  
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APPENDIX A: CATEGORIES OF CONCORDANCE 

We identify five types of concordance that can assist in evaluating whether a particular 

hypothesis is consistent with observed data: 

1. Transformational concordance.  A data series is transformationally concordant 

if its properties under each transformation (e.g., real space to log space) are 

consistent with our theoretical understanding of how those properties change 

across transformations.  For example, in real space, if a sequence of 

observations is presumed to be distributed as lognormal and if the logarithms of 

the observations yield zero skewness, the skewness would not contradict the 

normal distribution and therefore, the lognormal distribution in real space and 

the normal distribution in log space would be transformationally concordant.  

On the other hand, if the logarithms of the observations yield significantly non-

zero skewness, then the two distributions would be transformationally 

discordant, indicating that the original data may not be lognormally distributed. 

2. Frequency concordance:  A data series is said to be frequency concordant if the 

number of events predicted by some fitted pdf is consistent with the number of 

such events expected. 

3. Threshold concordance.  A data series is threshold concordant if the behavior of 

its pdf is consistent across thresholds. For example, it is well known that if the 

PDS series are made up of Poisson arrivals and an exponential distribution of the 

magnitudes above the threshold, then the AMS series which results should be 

consistent with a Gumbel model.  Testing if all these assumptions hold, 

together, would constitute a test of threshold concordance.    
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4. Geographic concordance.  A data series is geographically concordant if its 

probability distribution is consistent across geographic regions.  Here, 

concordance may depend on scale.  For example, although we may conclude 

that floods in the Pacific Northwest follow a GEV distribution (i.e., geographic 

concordance), we may not reach this conclusion looking across the entire U.S. 

(i.e., geographic discordance). 

5. Stationarity concordance.  A data series exhibits stationarity concordance if its 

pdf is temporally consistent.   If the pdf is not stationarity concordant, this may 

point to evidence of change due to anthropogenic influences. 
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ABSTRACT 

Climate change and rapidly rising global water demand are expected to place 

unprecedented pressures on already strained water resource systems.  Successfully 

planning for these future changes requires a sound scientific understanding of the 

timing, location, and magnitude of climate change impacts on water needs and 

availability – not only average trends, but also interannual and decadal variability and 

associated uncertainties.   This study focuses on new information and its use to better 

understand these uncertainties. In recent years, two types of large ensemble runs of 

climate projections have become available, those from groups of more than 20 different 

climate models, and those from repeated runs of several individual models. These 

provide the basis for novel probabilistic evaluation of both climate change and the 

resulting effects on water resources.  Using a range of available climate model 

ensembles, this research explores the spatial and temporal patterns of high confidence 

as well as uncertainty in projected river runoff, irrigation water requirements, and basin 

storage yield.  Cost estimates of adapting global water supply systems are developed for 

each ensemble, and implications for water management are discussed.   
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1 INTRODUCTION 

Due to rising temperatures and changing and more variable precipitation patterns, 

climate change will significantly affect the patterns of regional and global water 

availability and demand.  Combined with rapidly rising water demand associated with 

global economic development, these changes will place unprecedented pressures on 

already strained water resource systems.  Successfully planning for future changes that 

could exceed past variability and hence impact water availability in unprecedented ways 

requires a scientific understanding of the timing, location and magnitude of climate 

change, not only of average trends, but also of interannual and decadal variability and 

associated uncertainties.  To develop local and regional adaptation responses to water 

resource challenges that are robust to this wide range of future conditions, it is essential 

to characterize the extent of these uncertainties (Lempert and Groves 2009).   

In recent years, two types of large ensemble runs of climate projections have 

become available, those from groups of more than 20 different General Circulation 

Models (GCMs) that have been distributed to the community via the Coupled Model 

Intercomparison Project (CMIP), and those from repeated runs of several individual 

models.  Examples of the latter include ensembles of 40 and 17 members that are 

available from the National Center for Atmospheric Research’s Community Climate 

System model (CCSM3), and those of the Max Planck Institute’s ECHAM climate models 

(Deser et al. 2012). We henceforth refer to this type of ensemble as within-model, as 

opposed to between-model ensembles that include runs from different modeling 

systems.  Additional within-model ensembles are becoming available (e.g., using the fast 

Earth system model of the Hadley center, FAMOUS) or will become available within the 

next few years, and many other smaller within-model ensembles are available through 

64 
 



 

in the recent release of the CMIP5 archive.  In this analysis, we compare within-model 

results from the CCSM, ECHAM, and several CMIP5 ensembles, as well as the between-

model results from the full set of 23 different CMIP5 models.   

These ensembles have provided new approaches to the probabilistic evaluation of 

both climate change and the resulting effects on water resources, and thus improve our 

understanding of the timing and location of prudent climate adaptation measures.  

Using a range of ensembles, this research explores the spatial and temporal patterns of 

uncertainty in projected river runoff, irrigation water requirements, and basin storage 

yield.  Basin storage yield implications are translated to regional and global adaptation 

cost estimates for each ensemble, and the resulting implications for water management 

are discussed.  While global-scale climate trends among ensembles are relatively robust, 

local scale trends are much less so.  Precipitation is extremely variable at local scales, 

while temperatures are considerably less variable (e.g., from one model grid point to 

another).  River runoff, irrigation requirements, and basin storage yields involve 

precipitation averaged over the spatial scale of the basin, and are also dependent on 

temperature through evaporation.   Therefore, a central hypothesis of our work is that 

by integrating precipitation effects over space and time, projections of water resource 

variables will tend to have higher levels of within- and cross-ensemble agreement than 

precipitation.   

Several recent studies evaluated patterns of precipitation and temperature 

uncertainty using recent within-model ensembles, and some considered the timing of 

signal emergence relative to the noise of climate variability.  Solomon et al. (2009) 

identify patterns of regional agreement within precipitation patterns across the 22 

CMIP3 SRES A1B scenarios, and similarly, Deser et al. (2013) show strong similarities in 
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the patterns of variability between the 40-member and 17-member ensembles of the 

NCAR and ECHAM models.   From a signal-to-noise perspective, however, Mahlstein et 

al. (2012) evaluate the emergence of projected precipitation signals from noise at a 

more local level, and find few grid cells where emergence occurs.   In explaining the 

sources of uncertainty, Hawkins and Sutton (2009) identify three types—model 

uncertainty, emissions uncertainty, and internal variability—and suggest that both 

model uncertainty and internal variability decline relative to the signal as future 

emissions increase in the latter part of the 21st century.  Following on this theme, 

Hawkins and Sutton (2012) showed that many of the apparent differences in future 

climate change on shorter timescales (next few decades to mid-century) across the 

different CMIP3 models likely result from internal variability rather than modeling 

uncertainty.   

Several previous studies have evaluated the effects of climate change on global 

water supply and demand. Vörösmarty et al. (2000) use the Water Balance Model 

(WBM) to analyze the effect of climate change on global runoff at the 0.5 x 0.5 degree 

grid scale, but only relied on two GCMs to generate projections. Similarly, Alcamo et al. 

(2007) used the WaterGAP model to compute monthly river discharge and worldwide 

water availability under climate change at both a grid and basin scale, but only used two 

GCMs under the A2 and B2 SRES scenarios.  Arnell (2004) studied the effects of 24 

climate scenarios on future runoff in 1,300 global basins, but only focused on a single 

between-model ensemble and did not extend the work beyond runoff. Milly et al.’s 

article (2005) considered the outputs of 12 GCMs in their analysis of how climate change 

will affect runoff in 163 river basins, but also did not focus on within-model ensembles. 

More recently, Strzepek et al. (2013) evaluated the effects of climate change under 56 
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different model-SRES scenario combination runs on a set of six hydrological indicators, 

and found that model uncertainties in river runoff and irrigation water demand tended 

to be higher in developing than in developed countries.  Using the same set of 56 runs in 

a study of projected U.S. drought patterns, Strzepek et al. (2010) find that measures of 

drought that incorporate temperature rather than focusing on precipitation only (i.e., 

Palmer Drought Severity Index versus Standardized Precipitation Index) produce much 

greater between-model agreement due to the cross-model agreement in temperature 

trends.  Konzmann et al. (2013) also provided a detailed investigation of the impact of 

climate change on irrigation water demand for a range of GCMs. 

Research has been conducted on the economic effects of climate change on water 

resource outcomes, but typically have not used the broad range of climate models.  

Ward et al. (2010) investigated the potential costs of maintaining reservoir supply yield 

globally, but only evaluated outcomes using two climate models.  In this paper, we 

repeat components of this analysis and demonstrate that using different model runs, 

even from the within-model ensemble used for one of the two scenarios, could 

generate a much different outcome.  The Ward et al. study emerged from a broader 

World Bank program called the Economics of Adaptation to Climate Change (EACC), 

which estimated the costs of adapting to climate change in developing countries at $100 

billion per year in 2050 (World Bank 2009).  In more recent work, the costs of flooding 

and droughts (Strzepek et al, in review; Boehlert et al., in review) have been estimated 

using a set of model outputs derived from the NCAR Community Atmosphere Model 

(CAM) outputs.   
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In the following paragraphs, we document the methodologies used to investigate 

patterns of uncertainty across model ensembles, and then provide results of our 

analysis.  We conclude with a discussion of results and recommended further research. 

 

2 METHODOLOGIES 

In order to translate a suite of climate model outputs into projected effects on 

water availability and demand, a broad set of data source and modeling approaches is 

required.  As portrayed in Figure 22, the ensembles of General Circulation Models 

(GCMs) are the basis of the analysis process.   Projected changes in monthly 

temperature and precipitation for the 21st century period were collected from 220 GCM-

emissions scenario combinations available through the CMIP3 and CMIP5 archives and 

from the CCSM3 and ECHAM ensembles referenced above.   Changes in these 

parameters were calculated from an historical baseline of 1961 to 1990. These 220 GCM 

runs, which incorporate several greenhouse gas emissions scenarios and dozens of 

modeling frameworks, contain five between-model ensembles and 12 within-model 

ensembles and thus reflect a wide variability in possible spatial and temporal 

distribution of precipitation and temperature outcomes. Here we focus on two “eras”: 

2040-2059 and 2080-2099 (referred to as the 2050 and 2090 eras, respectively).  The 

first era is a relevant time-scale for current water infrastructure planning, and the 

second provides a means to evaluate later signal emergence in many regions where 

emergence does not occur by mid-century.  As a final step in climate model processing, 

we normalized the climate runs to a common climate sensitivity to ensure that the 

precipitation and temperature projections in the models probe the impact of variability.   
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For the water modeling components, we next combined the projected precipitation 

and temperature changes with historical data from the 1961 to 1990 baseline to 

produce absolute temperature and precipitation projections for each basin.  These 

absolute temperature and precipitation projections were used to estimate potential 

evapotranspiration (PET) using the Modified Hargreaves model (Allen et al., 1998, 

Droogers and Allen, 2002).  PET, together with projected precipitation and temperature, 

was then used to project irrigation water demand using the FAO 56 model, and river 

runoff projections using the climate runoff model (CLIRUN)-II, a two-layer, one-

dimensional rainfall-runoff model.  Lastly, basin storage yield was calculated based on 

annual runoff, and existing basin storage using the sequent peak algorithm.   

In the following paragraphs, we describe (1) characterizing the baseline conditions 

for the analysis, including datasets and issues of scale and resolution; (2) processing of 

climate model ensembles; (3) modeling runoff using CLIRUN-II; (4) modeling irrigation 

water demand; and (5) basin yield modeling. 
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Figure 22. Diagram of modeling processes 

 

2.1 Characterizing baseline conditions 

As this study uses gridded data of varying resolutions in order to model outcomes at 

the basin scale, both data processing methods and baseline dataset requirements are 

intensive.  Baseline temperature, precipitation, and runoff data have a resolution of 0.5 

x 0.5 degrees, and are coupled with climate model outputs of resolutions between 1 x 1 

degree and 4 x 5 degrees.  These are then spatially averaged to 8,951 river basins of the 

world for runoff and irrigation water demand modeling, and then those 8,951 basins are 
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aggregated to 126 major river basins for basin yield analysis.  Choices of spatial 

resolution and aggregation, PET calculation methods, and the baseline climate and 

runoff datasets are discussed below.   

 

2.1.1 Scale and resolution 

There is a trade-off between precision and accuracy when deciding on spatial and 

temporal resolution (Figure 23). A smaller scale analysis requires information that is 

more detailed, which means higher relative error, whereas a larger scale analysis allows 

for greater accuracy, but may not provide necessary levels of spatial or temporal 

precision.   

 
Figure 23. The cone of uncertainty in scale and resolution of modeling (source: 
Strzepek et al. 2011) 

 

This study employs two river basin resolutions that strike a balance between 

precision and accuracy, and are appropriate for the respective analyses in which they 

are used.  The first is 8,951 river basins of the world, which were developed by Strzepek 
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et al. (2011) using the Hydro1k data set from the US Geological Survey (USGS) for 

geographic delineation of basin boundaries (Figure 24).  The Hydro1k dataset is 

currently the best available for global river basin delineation (Strzepek et al. 2011).  The 

basins in the raw Hydro1k dataset range significantly in size, from the smallest 

catchments of less than one square kilometer to drainage areas for rivers such as the 

Nile or Amazon that are well over the typical grid scale of a GCM (that is, 2.5 x 2.5 

degrees). The 8,951 basins were selected to be no smaller than the resolution of 

available baseline climate data (0.5 x 0.5 degree), and thus range in size from 

approximately 2,500 km2 (which is similar to a baseline data grid cell of 

0.5 x 0.5 degrees), to more than 62,500 km2 (which is similar to a climate model grid cell 

of 2.5 x 2.5 degrees).  For the basin yield analysis, the river runoff projected for these 

basins is aggregated up to 126 major river basins of the World used in the IFPRI IMPACT 

model (Figure 24).  Data on reservoir storage are available for these larger basins. 

 
Figure 24. Map of the 8951 river basins (left) and 126 river basins (right) used in this 

study 

 

2.1.2 Baseline temperature and precipitation data 

Historical data is needed in this study for two reasons: (1) to model historical PET, 

runoff, and irrigation water demand that serve as a basis for calculating changes in 

those variables, and (2) to develop bias corrected GCM projections so that they are 
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consistent with observed data.   Baseline precipitation, temperature, and daily average 

temperature range data for the 1961-1990 period were from the University of East 

Anglia’s Climate Research Unit (CRU) Time Series (TS) 2.1 data set.  These three variables 

are needed for estimation of PET using the Modified Hargreaves formulation, and for 

runoff using CLIRUN-II.  The CRU TS data sets are the standard reference baselines for 

the World Meteorological Organization, and provide a monthly time series of these 

variables on a 0.5 x 0.5 degree grid.  For the 8,951 basins, mean annual precipitation 

ranges from <1 to over 6,000 millimeters (mm), and temperature ranges from -21 to 30 

degrees Celsius (Figure 25). 

   
Figure 25. Observed mean annual precipitation (left; mm) and temperature (right; 
degC) over the period 1961-1990; CRU TS 2.1 dataset spatially averaged to the 8,951 
river basins 

 

2.1.3 Potential evapotranspiration calculation 

PET is one of the key inputs to both the irrigation water demand and runoff models, 

and represents the amount of water lost through evaporation and transpiration 

assuming that sufficient water is available over the period in question.   PET depends on 

several variables, including temperature, wind speed, solar radiation, and the range of 

daily temperatures, and can be estimated using one of many methods, including 

Penman-Monteith, Harmon, Hargreaves, and more recently, Modified Hargreaves (see 

Allen et al. 1998 for a description of these methods).   
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If sufficient data are available, the U.N. Food and Agriculture Organization (FAO) 

recommends using Penman-Monteith, which requires the full set of PET input variables 

described above.  When only precipitation and temperature information are available, 

however, FAO recommends using a less data intensive method.   Because GCMs do not 

reliably reproduce certain key climate variables needed for the Penman-Monteith 

method (wind speed, most notably), in this study, we use the Modified Hargreaves 

approach (Allen et al. 1998, Droogers and Allen 2002).  Modified Hargreaves relies on 

precipitation, temperature, and average daily temperature range data, along with the 

latitude of the basin centroid, which is used to estimate solar radiation.  

 

2.1.4 Baseline runoff data 

Rainfall runoff models simulate the relationship between precipitation (rain and 

snow) and natural, unmanaged runoff.  As such, these models require natural runoff 

data to calibrate the simulated runoff outputs.  This analysis relies on two sources of 

baseline runoff data.   The first is a global gridded dataset of historical average monthly 

runoff from the Global Runoff Data Center (Fekete et al., 2002). This dataset is derived 

from a water balance model that relies on observed discharge information (Figure 26). 

The GRDC dataset preserves the accuracy of measured point discharge, and employs a 

gridded river network at a 0.5 x 0.5 degree resolution to represent river pathways and 

to link continental landmasses to oceans through river channels (Strzepek et al. 2011).   

The dataset provides 12 monthly mean values for each grid cell, and is currently the best 

globally available source of terrestrial runoff data.  Other datasets are being developed 

(e.g., McMahon et al. 2007), but are not yet available for use in a global runoff study. 
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The second source of runoff data is from the International Food Policy Research 

Institute (IFPRI), and provides a time series of monthly runoff data for the 282 IFPRI 

Food Producing Regions (FPUs) of the world, which are intersections between the 126 

major global river basins and country boundaries.  The data are available from 1950 and 

2000, and as described below, are used before applying the basin yield analysis to bias 

correct the spatially aggregated runoff outputs from CLIRUN-II.   

 

 
Figure 26. Locations of gauging stations used in the GRDC database.  Source: (Fekete et 
al., 2002, GRDC, 2007) 

As with temperature and precipitation, baseline gridded GRDC runoff data were 

processed to the 8,951 basins through spatial averaging.  Runoff data at the 282 FPUs 

are aggregated through spatial averaging to the 126 basins.  The resulting global spatial 

patterns of runoff depth in these two datasets map closely to each other and to 

precipitation (Figure 27). 
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Figure 27. Annual Observed Runoff (mm) in the 8,951 river basins (GRDC, at left) and 
in the 126 river basins (IFPRI, at right).  GRDC is the sum across the 12 available 
average values; IFPRI data is the annual average over the 1961-1990 baseline period. 

 

2.2 Climate ensembles: description and processing approach 

The central focus of this study is on the patterns and sources of uncertainty in a 

broad set of within-and between-model climate models.  The characteristics of these 

ensembles, and the processing procedures necessary to (a) normalize for differences in 

emissions and climate sensitivity assumptions and then (b) combine the resulting 

projections with baseline data of a different spatial resolution, are described below. 

 

2.2.1 Description of model ensembles 

This study relies on model ensembles from both IPCC’s CMIP3 and CMIP5 archives 

(available in 2007 and 2014, respectively), as well as two independently generated large 

ensembles (mentioned above) that rely on an emissions scenario employed by other 

CMIP3 models.  We consider 17 different ensembles that include a total of 220 model 

runs, which are organized by their model series (either CMIP3 or CMIP5), emissions 

scenario, and whether they are in a between- or within-model ensemble (Table 1).   

Of the total, the CMIP3 series contains seven of the 17 ensembles that include 144 

runs, and the remaining 10 CMIP5 ensembles cover 96 runs.  There are five between-

model ensembles, one for each of the available emissions scenarios, and 12 within-
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model ensembles.   Model spatial resolutions vary from 1 x 1 degree to 4 x 5 degrees, 

and we processed data for all ensembles over the 1900 to 2099 period (this period 

includes the modeled baseline).  Note that the 40-member CCSM3 ensemble extends 

from 1900 to 2061, and the 17-member ECHAM ensemble extends from 1950 to 2100.  

Also of note, the spatial resolution of the large CCSM3 ensemble is 2.8 x 2.8 degrees, 

differentiating it from the higher resolution but otherwise identical model included in 

the CMIP3 archive, which has a resolution of 1.4 x 1.4 degrees.    

Table 1. Characteristics of climate model ensembles relied upon in this study 
Model 
Series 

Ensemble Name/ 
Emissions Scenario 

Ensemble 
Type 

Members Time Period 
Available 

CMIP3 SRES B1 Between 17 1900-2099 
SRES A1B Between 22 1900-2099 
SRES A2 Between 17 1900-2099 
NCAR CCSM A1B Within 40 1900-2061 
NCAR A1B Within 7 1900-2099 
MPI ECHAM5 A1B Within 17 1950-2099 
MPI ECHAM5 A1B Within 4 1900-2099 

CMIP5 RCP4.5 Between 23 1900-2099 
RCP8.5 Between 20 1900-2099 
CCSM RCP4.5 and 8.5 Within 6 each 1900-2099 
CSIRO RCP4.5 and 8.5 Within 10 each 1900-2099 
CAN RCP4.5 and 8.5 Within 5 each 1900-2099 
GISS-R RCP4.5 Within 6 1900-2099 
GISS-H RCP4.5 Within 5 1900-2099 

 
 

The five emissions scenarios that encompass the 220 runs include the B1, A1B, and 

A2 storylines from the Special Report on Emissions Scenarios (SRES) report employed in 

the 2007 4th Assessment Report, as well as two Representative Concentration Pathway 

(RCP) scenarios at stabilization levels of 4.5 watts/m2 and 8.5 watts/m2 of forcing.   By 

the end of the 21st century, the ranking of total volume of global emissions among these 

scenarios from lowest to highest is B1, RCP4.5, A1B, A2, and RCP8.5, as reflected in the 

temperature projection outcomes of these five between-model ensembles (Figure 28).  
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Note that this ordering does not necessarily hold for periods other than the end of 

century, as the shapes of the emissions trajectories also vary over time. 

 

 
Figure 28.  Projected change in mean land surface temperature (left) and precipitation 
(right) from the 1961-1990 baseline, across the members of between-model CMIP3 
and CMIP5 ensembles included in this study.  Black line is average CRU TS2.1 
observational baseline. 

These 17 model ensembles are used for different purposes in this study depending 

on the particular question being asked.  As documented in the results below, the 

majority of analysis is conducted on three of the larger within-model ensembles (40-

member CCSM3, 17-member ECHAM, and 10-member CSIRO RCP4.5), and three of the 

between-model ensembles (22-member A1B, 23-member RCP4.5, and 20-member 

RCP8.5).  This set of within-model ensembles is selected to ensure that an adequate 

number of members is available to allow for statistical comparisons, and the between-

model ensembles are selected to provide a linkage between the emissions scenario 

utilized in two of the large within-model ensembles (SRES A1B), and the outcomes 

projected in the more recent set of CMIP5 models. 

 

2.2.2 Climate sensitivity and emissions normalization 
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Two important drivers of climate model outcomes are the assumed emissions 

trajectory (described above) and internal assumptions about climate sensitivity.  Climate 

sensitivity is the model-calculated global temperature response to a doubling of 

atmospheric carbon equivalents, and is a key uncertainty in climate modeling.  In order 

to focus on uncertainties derived from model structure and internal variability, we 

controlled for differing emissions and climate sensitivity by normalizing each GCM run 

to the mean global temperature and precipitation trajectory of the 22-member SRES 

A1B CMIPs3 ensemble.  The normalization procedure involved five steps for 

temperature (in Kelvin) and precipitation (in mm) and for each of the 220 GCM runs (see 

Figure 29):  

(1) develop a 2000 to 2099 trajectory for the globe of grid cell area-weighted 

means; 

(2) divide the trajectory of absolute projections (in Kelvin and mm) by the mean 

model baseline to develop a trajectory of ratios relative to the modeled 

base;  

(3) fit a fourth order polynomial to each trend of ratios;  

(4) divide the fitted trajectory of each GCM run by that of the fitted A1B CMIP3 

mean to develop a new trajectory of deviations from the mean; and  

(5) apply the ratios from Step 3 to the original GCM run to normalize. 

The results of this procedure are 220 GCM runs that share a common mean global 

temperature and precipitation trend (Figure 30).   
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Figure 29. Climate sensitivity adjustment procedure for 22 A1B SRES CMIP3 models 
(left) and application of the A1B CMIP3 trend to the ensemble of 20 CMIP5 models 
under RCP 8.5 (right)  

  
Figure 30. Projected changes in global temperature through 2100 under five A1B 
ensembles (left) and the climate-sensitivity adjusted trends (right) 
 
 

2.2.3 Combining the climate model projections with baseline climate data 

Because the spatial resolution of the 8,951 basins is generally finer than that of 

GCMs, it was necessary to match the lower resolution GCM output with the higher 

resolution basin scale. Available approaches for downscaling include statistical 

downscaling, or the use of empirical relationships; dynamical downscaling, or the use of 

regional climate models; and spatial techniques, such as linear interpolation or krigging.  

Given the number of climate model runs employed in this analysis and the fact that 

analytically correct dynamical and statistical downscaling techniques require extensive 

modeling and analysis for each GCM run, we employ a spatial technique in this study.   
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To allow for a common starting grid resolution, the 220 GCM projections were first 

re-gridded from their native spatial grid scale, which ranges from approximately 1x1 

degree to 4x5 degree, onto a common 2 x 2 degree grid.  This procedure involved 

spatially averaging the raw resolutions, which have varied latitude band widths near the 

poles, to the common resolution.  This initial step allowed the temperature and 

precipitation patterns among the GCMs to be readily compared across both land and 

ocean surfaces.1  For the water resources analyses, we then mapped these 2 x 2 degree 

projections for all land surfaces directly onto the 0.5 x 0.5 degree resolution of the 

baseline climate data.  This approach captures the range of potential climate change 

impacts at a higher resolution without downscaling the GCMs themselves. We then 

aggregating these gridded data to the basin scale by overlay basin boundaries with the 

0.5 x 0.5 degree grids, and then aggregating cells based upon their weighted area in 

each basin. For illustration, Figure 31 shows the 0.5 x 0.5 degree grid, the 2 x 2 degree 

grid, and the basins over the Horn of Africa. 

1 The resolution of 2 x 2 degrees was selected prior to the release of the higher resolution CMIP5 GCMs, 2 x 
2 being finer than the majority of GCM resolutions in the CMIP3 ensemble.  As a result, some information 
will be lost in averaging for any GCMs with resolutions under 2 x 2 degrees, which would affect the spatial 
detail of the higher resolution runoff analysis, but would be unlikely to affect broad analytical findings.  For 
future work, a common resolution of 1 x 1 degree would be more appropriate. 
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Figure 31. The horn of Africa showing an overlay of river basins, 0.5 x 0.5 degree grids, 
and 2 x 2 degree grids 

Next, basin-scale projected changes in precipitation and temperature for the 2050 

and 2090 eras were combined with basin-scale monthly precipitation and temperature 

data to generate absolute projections.  This procedure requires that the projected 

changes be adjusted for bias within each model run, where bias is any statistical 

differences between the observed climate baseline and the modeled baseline.  To do 

this, we first averaged the basin-scale modeled baseline and projections by month, so 

that within each grid cell, variable, and GCM run, there were 12 mean monthly outputs 

for the 30-year baseline and each 20-year future era.  The changes in each variable were 

generated using the delta method, which subtracts the mean monthly modeled baseline 

from the projected values to produce delta temperature and precipitation.2  Lastly, we 

added these projected changes to the gridded basin-scale CRU data to generate 

absolute monthly projections for each GCM run.3 

2 The delta approach has been applied widely in water planning studies (e.g., Hamlet et al., 2010, Sutton et 
al. 2011). 
3 Note that if the change in precipitation for a particular month and grid cell is negative and greater in 
absolute value than the observed value, the resulting absolute projection would be negative.  For example, 
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2.3 Runoff modeling 

This study employs CLIRUN-II to model changes in runoff under each of the GCM 

runs.  CLIRUN-II (Strzepek and Fant 2010, Strzepek et al. 2011) is a one-dimensional 

infiltration and runoff estimation tool that uses historic runoff as a means to estimate 

soil characteristics.  It is the latest model in a family of hydrologic models developed for 

the analysis of climate change impacts on runoff. Kaczmarek (1993) presented the 

theoretical development for CLIRUN, a single-layer, lumped, watershed rainfall runoff 

model, which he applied to the Yellow River in China (Kaczmarek, 1998).  A snow-

balance model and suite of PET models were added and the model was re-named 

WatBal (Yates 1996), which has subsequently been used on a wide variety of spatial 

scales from small and large watersheds to globally (e.g., Huber-Lee et al., 2005, Strzepek 

et al., 2005).  CLIRUN-II builds on the CLIRUN and WatBal frameworks by addressing the 

issue of modeling extreme events at the monthly and annual level. CLIRUN-II follows the 

framework of the six-parameter (SIXPAR) hydrologic model (Gupta and Sorooshian, 

1983, 1985) by adopting a two-layer approach, and employs unique conditional 

parameter estimation procedures.   

 

2.3.1 Model inputs and structure 

CLIRUN-II requires monthly precipitation, temperature, PET, and observed runoff. 

Baseline climate variables and observed runoff are used for calibration, and both the 

baseline and projected climate variables are subsequently used for generation of 

if modeled base precipitation in a grid cell and month is 80 mm and projected value is 30 mm, then the 
projected change would be a decrease of 50 mm.  If observed precipitation in that month and grid cell is 40 
mm, then the absolute precipitation would be -10 mm.  In these cases, projected precipitation is set to 1 
mm. 
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simulated modeled runoff outputs.  Runoff is treated as a lumped watershed, with 

average climate inputs and soil characteristics over the watershed, and runoff simulated 

at the mouth of the basin.  Reported outputs include surface runoff, subsurface runoff, 

baseflow, and total runoff, where the total is the sum of the first three.   

In CLIRUN-II, water enters the model via precipitation and leaves through ET and 

runoff generation (Figure 32).  Differences between inflow and outflow accumulate as 

storage in the soil or groundwater. The model treats soil moisture as a two-layer 

system: a soil layer (upper layer) and a groundwater layer (lower layer), which 

correspond to quick and slow runoff responses to effective precipitation (i.e., 

precipitation plus snowmelt). Quick runoff is the portion of the effective precipitation 

that enters the stream system directly as surface runoff; direct runoff depends on the 

soil surface, and is modeled differently for frozen soil versus non-frozen soil (driven by 

temperature). Slow runoff is then generated by the remaining effective precipitation, 

which infiltrates into the soil layer and leaves as subsurface runoff, groundwater, or soil 

storage through a set of nonlinear equations. Subsurface runoff is linearly related to soil 

water storage, and percolation is nonlinearly related to both groundwater and soil 

storage. The soil layer percolates to groundwater, and baseflow is produced as a linear 

function of groundwater storage. 
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Figure 32. Schematic of water flows in CLIRUN-II 

2.3.2 Calibration 

CLIRUN-II simulates natural runoff with six calibration parameters, and requires 

natural runoff data to calibrate the model over an historic period.  We calibrated the 

model by minimizing the squared differences between the 12 monthly GRDC runoff 

values and the 12 monthly averaged CLIRUN-II model outputs from 1971-1980 

simulation period; this period was selected to best represent the source period for the 

12 months of GRDC runoff data.  Note that there are several limitations of using the 

GRDC dataset for calibration: (1) the dataset provides monthly averages and so yields no 

information on extremes; (2) gridded data in dry areas with no gauged data are 

unreliable; (3) the period of station data availability varies, so there may be temporal 

inconsistencies in the gridded data.  As a result of these issues, calibration performance 

is closely tied to availability of runoff data (Figure 33).  The choice of CLIRUN-II also 

introduces uncertainties; prior research suggests that there can be large differences 
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between the results of alternative hydrological models (e.g., Haddeland, et al 2011, 

Schewe et al. 2013).   

     
Figure 33. CLIRUN-II Calibration Error [(Modeled - Observed)/Observed] on left, and R2 
value on right.  In error map, blue indicates that modeled outputs overestimate runoff 
and reds indicate underestimates. 

 

2.4 Irrigation water requirements modeling 

Globally, irrigation water requirements (IWRs) are the largest consumptive use of 

water, and will be significantly affected by projected rising temperatures and changing 

and more variable precipitation. Because of the strong dependence of crop water 

demands on temperature, climate change will have a more one-directional (i.e., 

increasing) effect on crop water demand than on runoff.  As a result, we would expect 

the IWR signal to emerge from the noise sooner in this variable than in water resource 

variables that depend more directly upon precipitation.   

Although detailed crop modeling of irrigation water requirements was far beyond 

the scope of this work, simplified methods can provide an understanding of water 

requirements suitable for a global scale analysis.  One such method was developed by 

FAO (Allen et al. 1998) and is employed by IFPRI (Rosegrant et al. 2002), and relies on 

data that are available at a global scale.  These include soil characteristics, temperature, 

precipitation, and PET, as well as crop-specific information including planting and 

harvest dates and seasonal timing of water demands.  Soil characteristics and timing of 
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water demands are available through FAO (Allen et al. 1998), and a database of global 

planting and harvest dates for a wide range of crops are available through the University 

of Wisconsin (Sacks et al. 2010).   

 

In this analysis, we focus on maize and wheat, which are the largest two global crops 

by growing area, and cover 18% and 15% of total global cropland in 2013, respectively 

(FAO 2014).   Crop coverage data is provided through the Harvested Areas and Yields 

dataset, which is available at a 1/12 x 1/12 degree resolution through University of 

Wisconsin (described in Monfreda et al. 2008; Figure 34).  Because this crop coverage 

dataset also includes rainfed areas, the area was reduced to irrigated regions only using 

an FAO dataset of global gridded irrigation data (described in von Velthuizen et al. 2007; 

Figure 35).  These data are spatially aggregated up to the level of the 8,951 global river 

basins. 

 

 
Figure 34. Global distribution of maize and wheat growing areas, where the shading of 
a cell represents the spatial fraction of that cell used to grow either maize or wheat 
(University of Wisconsin; Monfreda et al. 2008) 
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Figure 35. Distribution of irrigated areas globally, where darker shades of green 
represent a greater percentage of the grid cell area being used for irrigation (FAO; von 
Velthuizen et al. 2007) 

Overall, the process outlined by FAO (1998) and IFPRI (2002) for calculating IWR for 

a particular crop involves first estimating total monthly crop water demand (crop 

evapotranspiration, or ETc), then estimating available monthly supply (effective 

precipitation, or Pe), and then calculating IWR each month as the difference between 

these values (ETc – Pe).  The first step is to calculate ETc, which requires information on 

monthly reference evapotranspiration (ETo, which is equivalent to PET and calculated 

using Modified Hargreaves), the months when the crop demands water, and the crop 

water use coefficient for each month (Kc values).  FAO (1998) provides crop water use 

coefficients by season, which we convert to monthly values by interpolation.  Crop 

water demand is calculated for each month as the crop water use coefficient multiplied 

by reference evapotranspiration.  Mean annual baseline ETo, and the corresponding 

annual average ETc values for maize and wheat are provided in Figure 36. 

 

𝐸𝑇𝑐𝑐,𝑚 =  𝐾𝑐𝑐,𝑚 ∗ 𝐸𝑇𝑜𝑚 

 

Where: 

𝐸𝑇𝑐𝑐,𝑚 = Monthly crop evapotranspiration 

𝐾𝑐𝑐,𝑚 = Monthly crop water use coefficient 
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𝐸𝑇𝑜𝑚 = Monthly reference evapotranspiration 

 
Figure 36. Annual ETo in irrigated maize and wheat growing areas (left) and 
corresponding ETc for each crop (right), both in mm 

Next, we estimated effective precipitation as a function of soil water holding 

capacity, precipitation, and crop evapotranspiration.  Soil water holding capacity is 

based on depth of irrigation, which is a soil property provided within FAO’s universal soil 

database.  Effective precipitation is capped at crop evapotranspiration, because any 

water over crop water demands is no longer usable as supply. 

 

𝑃𝑒𝑚 = max�𝑓(𝐷𝐼) ∗ �1.253𝑃𝑚0.824 − 2.935� ∗ 100.001∗𝐸𝑇𝑐𝑚 ,𝐸𝑇𝑐𝑚� 

 

Where: 

𝑃𝑒𝑚 = Monthly effective precipitation 

𝑓(𝐷𝐼) = A function of depth of irrigation that varies in form depending on the value of 

DI 

𝑃𝑚= Monthly precipitation 
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Lastly, we estimate the IWR as the difference between monthly crop water demand, 

and monthly effective precipitation.  This value is specific to each crop, month, and river 

basin.   

 

𝐼𝑊𝑅𝑐,𝑚 = 𝐸𝑇𝑐𝑐,𝑚 − 𝑃𝑒𝑚 

 

 

2.5 Basin yield and adaptation cost estimation 

Basin yield is a measure of the annually reliable water supply from a basin.  Much of 

the water available in a basin during a given year is lost if not stored, so storage in a 

basin can greatly increase its reliable supply, or yield.  Basin yield is a useful broad 

indicator of the climate risk to basin-level water resources because it indicates a basin’s 

ability to absorb the impact of changes in both the mean and variability of flows under 

climate change.  Furthermore, achieving specified basin yield targets has economic 

implications, allowing the costs of adapting to climate changes to be estimated. 

The storage yield curve has been developed as a means of relating basin yield to 

basin storage, and is a measure of the volume of storage needed to achieve a given level 

of reliable yield.  Figure 37 provides an example of a storage yield curve for the Nile 

River at Aswan, and illustrates the information that the curve provides.  The maximum 

yield on the curve indicates the mean annual runoff in the basin, and the minimum yield 

indicates the lowest flow in the runoff time series for the basin in question.  That is, in a 

basin with no storage, the basin yield is assumed to be the lowest recorded annual flow.  

The shape of the storage yield curve is determined by the historical variability of basin 

runoff, where a steeper curve indicates a more stable system and a flatter curve a more 
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variable one.  So all else equal, a basin with more variable flows would require more 

storage to achieve the same level of reliable yield.    

 
Figure 37. Storage yield curve for the Nile River at Aswan (from Strzepek et al. 2011) 

 

2.5.1 Model formulation 

To construct storage yield curves, we use the sequent peak algorithm (Wiberg and 

Strzepek 2005, modified from Thomas and Fiering 1962), which is an iterative procedure 

that identifies the minimum storage volume needed to generate various levels of 

reliable yield, given a basin inflow time series.  In this formulation, the elements include 

reservoir storage, releases, evaporation and precipitation over the reservoir, and inflow, 

all at a monthly time step.  The current analysis does not include evaporation and 

precipitation on the surfaces of reservoirs. 

 

𝑆𝑡 = {𝑅𝑡 + 𝐸𝑡−1 − 𝑃𝑡−1 − 𝑄𝑡 + 𝑆𝑡−1 | 𝑖𝑓 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒; 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,  𝑆𝑡 = 0} 

 

Where:  

St = reservoir storage requirement 

Rt = releases 
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Et = evaporation above the reservoir 

Pt = precipitation above the reservoir 

Qt = inflow 

t = time step 

 

2.5.2 Generating storage yield curves under climate scenarios 

Climate change can affect all elements of a storage yield curve, including the 

maximum yield given by the mean annual runoff, the minimum yield assumed to be the 

lowest annual flow, and the curve’s slope given by variability of inflows.  As a result, 

basin yield serves as an integrator of the various potential effects of climate change over 

both time and space.  Importantly, climate change will also affect yield reliability, which 

can be estimated using long-established synthetic flow time series generation 

techniques that provide confidence intervals on the storage yield curve (Thomas and 

Fiering 1962).   

There are two perspectives on the effect of climate change on storage yield.  The 

first focuses on the impacts of climate change, and evaluates the change in yield given a 

fixed basin storage.  The second view focuses on adaptation, and considers the change 

in storage that would be required to maintain a fixed yield (Figure 38).  If yields increase, 

climate change may provide economic benefits, but only if the basin has existing water 

deficits or growing demands, or if markets exist to trade water between basins.   
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Figure 38. Example of storage yield curve (source: Ward et al. 2010). In a basin where 
runoff is projected to decline between 2010 and 2050, the yield provided by existing 
storage K falls from Y2010 to Y2050.  To maintain yield levels of Y2010, storage would need 
to increase from K to K’. 

Using baseline and projected annual runoff and low-flow values, baseline and 

projected storage yield curves were created for each of the 126 basins (described 

above), for the baseline and across all 220 GCM runs, and for both the 2050 and 2090 

eras.  Combined with information on reservoir storage in each of the 126 basins from 

IFPRI (Figure 39 on left), these storage yield curves provide information on changes in 

basin yields given existing basin storage, and in cases where yields fall, the required 

increases in storage needed to maintain existing yields.   Note that in basins where the 

ratio of existing basin storage to current mean annual runoff exceeds one (Figure 39 on 

right), then additional storage will provide no additional basin yields.  In these basins, 

falling yields would require alternative, non-storage adaptation options. 
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Figure 39. Existing basin storage in billions of cubic meters (BCM; left) and the ratio of 
basin storage to mean annual runoff (MAR; right).  The ratio of basin storage to MAR 
is the number of years of average flow that can be stored in the basin’s reservoirs.   

2.5.3 Costs of maintaining current basin yield 

We next estimate the economic impacts of maintaining current basin yields under a 

changing climate.  In basins where yields decline, the adaptation response is assumed to 

be storage or a backstop of $1 per cubic meter of lost yield, whichever is less expensive.  

Costs of storage are taken from International Water Management Institute (Keller et al. 

2000) and Wiberg and Strzepek (2005), who estimate volume-cost relationships for 

reservoirs.  The backstop price per cubic meter is adopted from Ward et al. (2010), who 

take a similar approach to the current study in estimating the global costs of maintaining 

basin yields under climate change.   

On the other hand, if basin yield increases under climate change, we assume that 

surplus water provides economic benefits only if the basin is water stressed.  

Operationally, if water is below a relative water stress of one on UNESCO’s World Water 

Assessment Program (2006) water stress index, that basin is assigned no value for 

surplus water.  Other basins are assigned values between $0/m3 and $1/m3, scaled to 

the basin’s water stress index level (Figure 40). 
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Figure 40: Assumed value (in US$) per cubic meter of surplus yield.  Basins shaded in 
yellow and red (higher water value) are water stressed, whereas basins shaded in blue 
(lower water value) have little water stress. 
 

 

3 RESULTS 

The overall purpose of this inquiry is to analyze spatial patterns of agreement and 

disagreement between water availability and demand metrics, and possible lessons for 

water management and climate change adaptation.  As the methods of evaluating levels 

of agreement are varied, we first present the metrics and indicators that are the focus 

of this assessment.  We next present levels of agreement among ensemble patterns of 

changes in precipitation, which is the primary driver of global patterns of runoff and 

thus storage yield.   These precipitation patterns are then compared to patterns of 

agreement in runoff, which although similar, differ in important ways due to 

dependence on temperature and the fact that runoff integrates climate outcomes over 

space, as previously discussed.  Next, we discuss the patterns of change in IWR, which 

depend much more heavily on temperature and therefore shows stronger patterns of 

agreement.  Lastly, our focus turns to patterns of agreement across ensembles in basin 

yield and the economic implications of maintaining historical yields.  As reservoir 
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systems integrate the effects of climate variability and change over both time and space, 

this provides a broader perspective on patterns of agreement among ensembles. 

 

3.1 Metrics, ensembles, regions, and period of focus 

The metrics, ensembles, basins, and period of time that are the focus of this section 

are: 

• Metrics.  As the study focuses on agreement among water resource indicators, 

there are many potential metrics that can be used for comparison purposes.  In this 

study, we focus on magnitude of changes in trends, level of agreement across 

ensembles in terms of direction of change, and signal-to-noise ratio.  The signal over 

noise ratio provides information on when a climate signal is statistically significant, 

and can provide valuable information on trigger points for adaptation.  For example, 

the adaptation strategy of flexible design (De Neufville and Scholtes 2011) involves 

designing infrastructure systems so that future adjustments can be made once more 

information becomes available (e.g., building additional hydropower turbine bays, 

and then adding the turbine only if a wet future occurs). 

• Ensembles.  Although we have processed 220 model runs from 17 ensembles, as 

noted above, we focus our comparisons on three of the larger between-model 

ensembles (40-member CCSM3, 17-member ECHAM, and 10-member CSIRO 

RCP4.5), and three of the between-model ensembles (22-member A1B, 23-member 

RCP4.5, and 20-member RCP8.5).  Including only the three largest between-model 

ensembles provides an adequate number of members for statistical comparisons; 

this set of between-model ensembles provides a linkage between the earlier SRES 
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A1B used for the CCSM3 and ECHAM between-model ensembles, and two separate 

emissions scenarios from the CMIP5 suite of models. 

• Basins. Although maps are presented showing both the 8,951 and 126 river basins 

of the world, tabular results are presented for only a subset of the 126 basins 

(Figure 41).  These were selected to illustrate a broad cross-section of results, and 

include one or more major river basins in North America, South America, Africa, the 

Middle East, Central Asia, and Eastern Asia.   

• Period.  While results were generated for both the 2050 and 2090 eras, we focus on 

the 2050 (i.e., 2040-2060) period, which includes results for the 40-run NCAR 

CCSM3 ensemble. 

 
Figure 41. Selected river basins included in tabular results 

 

3.2 Precipitation patterns 

Although prior research using climate model ensembles has already examined 

agreement in patterns in precipitation across model ensembles (e.g., Deser et al. 2013), 

we provide similar analysis here for three reasons: (1) precipitation is the source of 

broad changes projected in other water resource variables to be discussed below, (2) 

patterns of change in precipitation serve as a point of comparison to the other water 
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resource variables, and (3) precipitation is global rather than confined to land surfaces, 

providing a more integrated picture of GCM patterns compared to runoff.   

 

3.2.1 Agreement patterns over time and emissions scenarios 

Our first observation is that agreement patterns in precipitation are spatially 

consistent over time and with emissions scenarios (Figure 42).  As time progresses and 

emissions rise, the patterns of both agreement and persistent disagreement remain 

relatively fixed within models.  With regard to emissions, note that the adjustment to 

the global mean precipitation trend means that the global trend in each decade is 

consistent across all ensembles.  As such, the deeper colors on the RCP8.5 figure (right 

in Figure 42) reflect intensification of trends in both directions, rather than higher or 

lower precipitation globally. 

        
Figure 42: Percentage Change in annual precipitation, ensemble mean, 23 CMIP5 
RCP4.5s (left) and 20 CMIP5 RCP8.5s (right), from the 1961-1990 baseline and the 
2010s through the 2090s.  In regions shaded white, fewer than 2/3 of the model 
members agree on the direction of change.  Regions shaded gray have at least 2/3 of 
models agreeing on a small change of between -3% and +3%. 
 

The regions of persistent disagreement suggest areas of the globe with 

meteorological patterns that are difficult to correctly model in the climate system, and 

the consistency of agreement patterns suggests emergent behavior characteristic of 
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each model.  Not unexpectedly, within-model ensembles have a much greater degree of 

agreement in direction of change among members (Figure 43).  The 40-member CCSM3 

(40NCAR on Figure) and 17-member ECHAM ensembles both show very few regions on 

the globe where less than 2/3 of models agree on sign change. 

 
Figure 43: Percentage change in annual precipitation, ensemble mean for various 
between (left) and within-model ensembles between the 1961-1990 baseline and the 
2050 era.  In regions shaded white, fewer than 2/3 of the model members agree on 
the direction of change.  Regions shaded gray have at least 2/3 of models agreeing on 
a small change of between -3% and +3%.  

 

3.2.2 Agreement patterns across multiple within-model ensembles 

In certain regions of the globe, agreement remains strong across two or more 

within-model ensembles, regardless of emissions scenario and CMIP series.  We average 

the level of agreement, measured as the fraction of ensemble members that show a 

positive change in sign, across two ensembles of like emissions scenarios (Figure 44), 

and across five ensembles from available sets of CMIP5 RCP4.5 groupings, which is the 

broadest set of within-model ensembles available in our dataset (Figure 45).  

Interestingly, we agreement patterns in certain regions are maintained even when 

patterns from five within-model ensembles are combined.  Consistently drying regions 

99 
 



 

include northern Africa and southern Europe, southern Africa, the southwestern US and 

central America, and Indonesia.  Wetting regions include southeastern South America, 

the northeastern US, eastern and southern Asia, and the northern latitudes.  This 

suggests less model uncertainty exists in these regions than in areas such as Indonesia 

or central Africa.  Notably, most of the land surface areas of large disagreement appear 

to be in mid-continental (i.e., rather than coastal) regions of North and South America, 

Australia, Africa, and the Middle East. 

 
Figure 44. Fraction of ensemble members agreeing on a positive direction of change, 
where blue indicates agreement on wetting, and red indicates agreement on drying.  
Change is assessed between the 1961-1990 and 2050 era.  Each rightmost map is the 
numerical average of its two counterparts to the left, and each row includes a set of 
like-emissions scenario within-model ensembles.   
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Figure 45. Fraction of ensemble members agreeing on a positive direction of change 
for five within-model CMIP5 RCP4.5 ensembles.  Change is assessed between the 
1961-1990 and 2050 era.  The bottom-right map is the numerical average of the other 
five ensembles.   

 

3.2.3 Patterns of agreement in latitude bands 

Lastly, patterns of changes in precipitation by latitude band are very similar across 

both inter- and intra-GCM ensembles, suggesting that the bulk of disagreement 

between models results from longitudinal differences (Figure 46).   

 
Figure 46. Percent change in precipitation between the 1961-1990 baseline and the 
2050 era.  Boxplots are averages of all grid cells in 4-degree latitude bands of the 
earth, with the boxplots being defined based on ensemble members. 
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3.3 Runoff 

One of the central arguments of this work is that because water resource variables 

are dependent on temperature and integrate changes in precipitation over space, water 

resources variables will tend to have greater levels of agreement between model 

ensembles.  We next compare the level of agreement between modeled runoff at the 

8951 and 126 basins to levels of agreement within precipitation at the same scales, and 

then evaluate signal over noise ratios to identify emergence. 

 

3.3.1 Agreement across ensembles relative to precipitation 

Generally, runoff exhibits a spatially similar pattern of agreement to precipitation, 

but with a more robust agreement on drying in certain regions such as Australia and 

South America (Figure 47).  As these levels of agreement are difficult to identify clearly 

visually in maps, Table 2 compares the percentage of sign agreement within selected 

river basins, with wetting or drying agreement of greater than 80% shaded in blue and 

red.  Certain basins, such as the northeastern US or Eastern Mediterranean, have 

universal agreement across models, suggesting robust trends in those regions.  The 

most apparent difference between precipitation and runoff, however, is a general 

increase in drying, presumably due to the incorporation of temperature.  In the Orinoco 

(South America), Niger (western Africa), Amudarja (Central Asia), and Huang He (China), 

this drying moves individual ensembles into the 80% drying category when precipitation 

is translated to runoff. 
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Figure 47.  Fraction of ensemble members showing a positive change in annual 
precipitation (left) and runoff (right) from the 1961-1990 baseline to the 2050 era.   
Each rightmost map is the numerical average of its two counterparts to the left, and 
each row includes a set of like-emissions scenario within-model ensembles.   

 

Table 2. Percent of ensemble members showing a positive change in precipitation and 
runoff, change from 1961-1990 to the 2050 era.  Cells shaded in blue indicate that 
greater than 80% of members agree on a wetting trend, and in red means more than 
80% agree on a drying trend.  Basin locations provided in Figure 41 above. 

Basin 
Precipitation Runoff 

40NCARs 17ECHAMs 10R4CSIRO 40NCARs 17ECHAMs 10R4CSIRO 
Zambezi 63% 0% 0% 28% 0% 0% 
Congo 100% 94% 0% 100% 35% 0% 
Niger 100% 100% 10% 0% 100% 0% 
Nile 100% 100% 0% 100% 47% 0% 
Orange 100% 18% 0% 85% 6% 0% 
Orinoco 100% 35% 30% 100% 6% 20% 
Amudarja 5% 35% 60% 0% 29% 10% 
Syrdarja 3% 71% 60% 3% 59% 50% 
Huang_He 100% 71% 70% 100% 18% 30% 
Black_Sea 3% 47% 30% 5% 94% 70% 
Colorado 0% 41% 10% 0% 35% 10% 
US_Northeast 100% 94% 100% 100% 100% 100% 
E. Mediterranean 0% 0% 0% 0% 0% 0% 
N. African Ctries 0% 0% 0% 0% 0% 0% 

 

 

3.3.2 Signal-to-noise in runoff versus precipitation 
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As noted above, the signal-to-noise (S-N) ratio can provide synthesized information 

about agreement on trends within an ensemble of model runs.  We process the S-N 

ratio following the approach employed by Deser et al. (2012), who define the signal as 

the change from a baseline to a given 30-year projected period, and the noise as the 

interannual standard deviation over those 30 years.  In our case, the signal would be the 

difference between the mean 1961-1990 value and the 2050 era value, and the noise 

would be the interannual standard deviation during the 2050 era.  We then report the 

median S-N ratio over the ensemble for the 126 basins (Figure 48) and a selection of 

those basins (Table 3). 

By 2050s, drying signal emerges in some arid regions during dry season (lowest 3 

months of runoff for each basin; Figure 48 at right), and wetting annual signal emerges 

in others (Figure 48 at left) , although the effect is still modest.  This absense of apparent 

emergence in runoff is similar to the findings of Mahlstein et al. (2012) for annual 

precipitation within the CMIP3 A1B ensemble.4   

Annual 22 A1B results similar to spatial pattern of precipitation emergence documented 

in Mahlstein et al. (GRL 2012).  As with agreement, comparing precipitation and runoff 

S-N ratios across individual basins suggests that runoff tends to move signals in a more 

drying direction due to the temperature effect (Table 3).  Some emergent wetting S-N 

ratios in precipitation are only mild S-N ratios in runoff, and many of the drying ratios 

intensify.5 

4 Importantly, note that the high arid basin S-N ratios  during the dry season is most likely 
attributable to near zero runoff during those months. 
5 Looking at monthly trends in precipitation and runoff over the 22 CMIP3 A1B runs reveals 
clearer signs of month-to-month emergence (i.e., whiskers do not overlap zero line) in runoff 
than precipitation (See Appendix B, Figure B-1). 
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Figure 48. Median ensemble signal to noise ratio of annual runoff (left) and dry season 
runoff (right) across the 126 basins, from the 1961-1990 baseline to the 2050 era.  The 
signal is the average change between periods, and the noise is the interannual 
standard deviation of the 2050 era.  The dry season is defined as the lowest three 
months of the baseline period each year for each basin.   

 

Table 3. Median ensemble ratio of signal to noise in annual precipitation and runoff 
for select basins, where the signal is the trend from the 1961-1990 period to the 2050 
era, and the noise is the interannual standard deviation of the 2050 era.  Cells in light 
blue show S/N ratios of 0.5 to 1, dark blue greater than 1, light red between -0.5 and -
1, and dark red less than -1.  Basin locations provided in Figure 41 above. 

Basin 
Annual Precipitation Annual Runoff 

40NCARs 17ECHAMs 10R4CSIRO 40NCARs 17ECHAMs 10R4CSIRO 

Zambezi 0.03 -0.45 -0.64 -0.06 -0.39 -0.65 
Congo 1.16 0.34 -1.35 0.44 -0.07 -1.84 
Niger 0.44 0.41 -0.80 -0.46 0.38 -1.51 
Nile 1.32 0.33 -0.59 0.41 -0.03 -0.33 
Orange 0.56 -0.27 -0.51 0.09 -0.30 -0.55 
Orinoco 0.77 -0.09 -0.29 0.47 -0.32 -0.66 
Amudarja -0.33 -0.12 0.08 -0.33 -0.32 -0.16 
Syrdarja -0.35 0.19 0.08 -0.29 0.06 -0.05 
Huang_He 1.48 0.15 0.16 1.39 -0.34 -0.25 
Black_Sea -0.34 -0.01 -0.10 -0.24 0.35 0.14 
Colorado -0.69 -0.06 -0.33 -0.60 -0.09 -0.41 
US_Northeast 0.84 0.53 0.59 0.65 0.69 0.67 
E. Mediterranean -0.72 -0.64 -0.51 -0.90 -0.69 -0.47 
N. African Ctries -0.26 -0.47 -0.48 -0.56 -0.82 -0.89 

 
 

3.4 Irrigation water requirements 
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Irrigation water requirements are the largest global water use and therefore a 

strong indicator of the incremental effect that climate change will have on global water 

demand.  Due to the strong dependence on temperature, regional trends are generally 

positive, and agreement across both between- and within-model ensembles is 

considerably broader than with precipitation or runoff (Figure 49).  Because IWR is the 

difference between crop water demands and usable rainfall, the strongest positive 

trends are in regions where rainfall declines are largest.  Although one would expect to 

see clear emergence of the signal from the noise based on these trends, the interannual 

variation of IWR is driven by both temperature and precipitation, and this “double 

noise” causes noise to generally overwhelm the signal, with some exceptions in the 

Middle Easter and western North America (Figure 50).   

 
Figure 49. Percentage Change in irrigation water requirement, ensemble means, from 
the 1961-1990 baseline to the 2050 era.  In regions shaded white, fewer than 2/3 of 
the model members agree on the direction of change.  Regions shaded in lighter gray 
have at least 2/3 of models agreeing on a change of between -3% and +3% 
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Figure 50. Median IWR signal-to-noise ratio across ensemble members for 9 
ensembles.  Signal is mean change between 1961-1990 and 2050 era, and signal is 
interannual standard deviation over yeras in the 2050 era. 

 

 

3.5 Basin storage yield 

Sustainable water supply yield from a river basin is influenced by mean annual 

runoff, interannual flow variability, and available storage infrastructure.   As a result, 

changes in minimum flows, variability, or mean conditions under climate change would 

affect basin yield.  Figure 51 provides an example—for a set of four between-model 

ensembles for the Zambezi basin in southern Africa—of how climate change can affect 

storage yield in a basin.  Due to its shallow slope, small vertical changes in the storage 

yield curve can cause large increases in storage requirements to maintain fixed yields.   
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Figure 51. Storage yield curves for Zambezi Basin. Historical storage yield curve is a 
black solid line; existing storage is a vertical black dashed line; resulting current yields 
is a horizontal black dashed line; storage yield curves for each of the ensemble 
members are colored solid lines; and storage requirements to maintain current yields 
are vertical gray dashed lines.   

As described in the methodologies and suggested in Figure 51, in basins with falling 

yields, either additional storage or another source (e.g., desalination) will be needed to 

meet demands.  On the other hand, increases in storage yield may present 

opportunities for internal basin development or inter-basin transfers.  Changes in yields 

closely mirror changes in runoff (Figure 52, on left), whereas resulting changes in 

storage requirements can be magnified considerably due to the nonlinear relationship 

between yield and storage (Figure 52, on right). 

        
Figure 52. Median percent change in storage yield across select ensembles (left) and 
median percent change in storage to maintain constant yield across select ensembles 
(right) 
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As described in the methodologies section, we estimate the economic effects of 

climate change by assuming that basins with decreasing yields incur costs to maintain 

historical yields, and that basins with increasing yields gain those as economic benefits if 

water is scarce.  Costs are the cheaper of either increased storage or a backstop of $1 

per cubic meter of lost yield, whichever is less expensive.  We find that the median 

annual global net costs of adapting to climate change in the 2050 era is $15 billion per 

year at a 5% discount rate (Figure 53); higher than Ward et al. (2010), although that 

study focused on developing countries only). However, the inter-quartile ranges of the 

CMIP3 and CMIP5 ensembles range from -$5 billion (RCP4.5) to +$40 billion (A2), and 

the range of intra-GCM ensembles is from -$25 billion (NCAR A1B) to +$80 billion (CSIRO 

RCP4.5).  A lesson to draw from these findings is that it is critically important to consider 

a broad range of climate models when doing adaptation planning.6 

           
Figure 53. Median Cost Across Select Ensembles (billions of US$, discounted at 5%; 
left) and Boxplots of Global Costs for each Ensemble (billions of US$, discounted at 
5%; right) 

To evaluate agreement among adaptation cost estimates, it is more relevant to 

focus on geographic regions rather than the globe.  As a result, we aggregate the basin-

6  For example, the World Bank EACC study estimate costs of adaptation in developing 
countries to be ~$100 billion per year.  The water supply component of this was approximately 
$9 billion/year.  They used two scenarios—NCAR A2 run 1 (dry), and CSIRO A2 run 1 (wet)—to 
develop these estimates, which result in a range from -$20 billion to +$95 billion based on our 
run 1 of these two ensembles. 
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scale costs to the seven World Bank regions, which include East Asia and the Pacific 

(EAP), Europe and Central Asia (ECA), Latin America and the Caribbean (LAC), Middle 

East and North Africa (MENA), South Asia (SA), Sub-Saharan Africa (SSA), and all other 

countries (NB; see Figure 54).  We see an unexpected degree of agreement in direction 

of economic outcome across these regions (Figure 55).  In the MENA region, the 

interquartile range (IQR) of the three between-model and three within-model 

ensembles all show positive costs, and in the SSA region, only one ensemble has an IQR 

with economic benefits.  There is a general agreement on benefits in SA, and on costs in 

LAC and other countries.   

 
Figure 54: World Bank regions 
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Figure 55. Distribution of adaptation net costs across three between-model and three 
within-model ensembles for each World Bank region. The dashed red line represents 
zero net costs, values above the line represent net costs, and below the line represent 
net benefits.  The boxplots are composed of individual model runs within each 
ensemble. 

The explanation for the much stronger sign agreement in economic effects has two 

sources: (1) economic outcomes map to runoff, which includes the stronger sign 

agreement in temperature; and (2) in many basins, changes in precipitation have a 

magnified effect on runoff.  These dynamics can be seen for a selection of basins in 

Figure 56, which plots percentage changes in precipitation and runoff versus annual 

costs for all 220 model runs.  That the fitted precipitation line is generally above the 

runoff line, indicating that zero changes in precipitation will still result in costs due to 

the temperature effect.  In basins such as Zambezi, Volta, and Niger, the precipitation 

line is steeper than the runoff line, such that marginal changes in precipitation have a 

magnified effect on economic outcomes, leading to greater sign agreement. 
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Figure 56.  Percentage changes in runoff (blue) and precipitation (green) versus annual 
adaptation costs in selected basins, where each point represents one of the 220 model 
runs.  The lines are a 4th order polynomial fit to the points.   

 

4 CONCLUSIONS AND FURTHER RESEARCH 

Climate change and rapidly rising global water demand are expected to place 

unprecedented pressures on already strained water resource systems.  Successfully 

planning for these future changes requires a sound scientific understanding of the 

timing, location, and magnitude of climate change impacts on water needs and 

availability – not only average trends, but also interannual and decadal variability and 

associated uncertainties.  Using a range of available within- and between-model 

ensembles, this research explores the spatial and temporal patterns of high confidence 

as well as uncertainty in projected river runoff, irrigation water requirements, and basin 

storage yield.  A central hypothesis of our work is that by integrating precipitation 

effects over space and time, projections of these water resource variables will tend to 
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have higher levels of within- and cross-ensemble agreement than precipitation.  Under 

each ensemble, we also develop cost estimates of adapting global water supply systems 

to maintain historically available supply.   

   

4.1 Conclusions 

We begin this research focusing on precipitation, which is the main climatic driver of 

uncertainty in projections of water demand and availability.  Between-model patterns of 

high confidence and uncertainty in precipitation tend to remain fixed over time and with 

increased forcing (Figure 42), suggesting ‘emergent behavior’ in each model that has 

been observed in prior research (e.g., Strzepek and Schlosser 2010).  Projected changes 

in precipitation and temperature drive modeled changes in river runoff, and we observe 

strong spatial patterns of multiple-ensemble agreement and disagreement in both 

precipitation and runoff trends (Figure 47).  Regions with robust cross-ensemble drying 

trends include southern Europe, northern Africa, western Australia, southern Africa, 

eastern Brazil, and northern Mexico; and wetting trends occur in the northeastern US, 

Canada, northern regions of the globe, and parts of southeast Asia.    

Basin yield has the advantage of integrating changes in both the mean and 

variability of projected runoff over time.  We find that relative to changes in 

precipitation, patterns of changes in basin yield are both magnified and systematically 

drier due to the dependence of river runoff on land surface dynamics and temperature.  

Due to the temporally integrating effects of basin yield and monetary discounting, the 

costs of maintaining historical yields show still stronger patterns of agreement across 

GCM ensembles, particularly when focusing on agreement within broad geographic 

regions (Figure 55).  If the robust patterns of projected increases in irrigation water 
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requirements (Figure 49) were incorporated into basin supply needs to more fully 

capture the effects of climate change, the model agreement observed here would be 

broader still.  The fact that agreement exists across such a broad range of multiple-

member GCM ensembles suggests a high degree of confidence in direction of change in 

water availability in these regions, and provides clearer signals for longer-term 

investment decisions in water infrastructure.  By showing the variability in adaptation 

costs across within-model ensembles, this research also re-affirms the importance of 

considering a broad range of climate models when doing adaptation planning.  Reliance 

on the outputs of too few models can generate highly misleading results, particular in 

regions where the direction and magnitude of projected changes are highly uncertain.   

 

4.2 Further Research 

There are several avenues for future research.  First would be a more complete 

evaluation of the time of signal emergence in runoff, irrigation water demand, and 

changes in storage yield.  The influence of temperature on the water system likely 

means earlier emergence times, which has implications for adaptation planning.  Such a 

study would also incorporate new recently available large between-model ensembles.  

The current work focuses primarily on two ensembles: the 40-member NCAR and 17-

member ECHAM sets.  Broader conclusions about agreement between ensembles would 

be possible using new ensembles, such as the 30-member CESM1 (CAM5) set.  Another 

important direction for future work is an assessment of whether select ensembles are 

more appropriate for certain regions based on their statistical performance relative to 

the observed climate of that region (i.e., the model skill of the ensemble).  Although our 

screening assessment comparing basin yield outputs using modeled and observed 
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climate inputs suggests that model skill is generally too poor for clear region-ensemble 

couplings to emerge (Appendix B), a more thorough investigation is needed.  

Future research would also integrate projected changes in irrigation water 

requirements and supplemental irrigation requirements stemming from changes in 

rainfed yields into an analysis of basin water supply under an uncertain future.  

Estimates of economic outcomes could be developed using ranges of population 

trajectories and environmental flow assumptions.  In addition, the broader study would 

evaluate implications for basin yield and adaptation costs incorporating a wider set of 

projected global changes, including rising food demands, population increases, and 

environmental flow requirements.  The present analysis evaluates how historical yields 

would be affected under climate change given current population and per capita water 

use.  Because storage yield curves are non-linear, further research would evaluate the 

incremental impacts of climate change on future rather than current yield 

requirements.   
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APPENDIX A: SUPPLEMENTAL GRAPHICS REFERENCED IN MAIN BODY 
 

 
 

 
Figure A-1. Monthly patterns of percent changes in precipitation (upper graphic) and 
runoff (lower graphic) to the 2050s across the 22 A1B runs.  Runoff tends to be both 
less variables and show clearer signs of month-to-month emergence (i.e., whiskers do 
not overlap zero line) than precipitation. 
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APPENDIX B. SCREENING ASSESSMENT OF MODEL SKILL 

 

We evaluated the possibility of recommending some subset of ensembles for a given 

region based on their performance relative to the observed history of that region.  The 

degree to which a model is able to replicate the statistical characteristics of history for a 

region is called its “skill”.  Table B-1 presents the skill of several ensembles at estimating 

basin yield for a set of 21 basins, where skill is defined based on the mean percent 

deviation in three yield values: (1) at zero reservoir storage, (2) at existing storage, and 

(3) mean annual runoff.  For this assessment, we relied on runoff generated using the 

Turc-Pike model (Turc 1954, Pike 1964) for both the observed and modeled climate 

series over the 1941-1990 period.   Figures B-1 and B-2 present the mean model bias in 

mean precipitation and the mean model bias in the coefficient of variation on annual 

precipitation between 1941-1990.  From this preliminary assessment, the ensembles do 

not appear to perform well systematically, although further inquiry is warranted.  

 

Table B-1.  Median percent difference across ensemble members between 1941-1990 
historical basin yield and 1941-1990 modeled basin yield.  To develop basin yield, the 
Turc-Pike model is used to generate annual runoff estimates for this period, and then 
storage yield curves are constructed.  The measure below is the median of differences 
between yield readings from the “observed” and “modeled” storage yield curves: 
minimum yield, yield at existing storage, maximum yield (MAR).  Shaded differences 
have absolute errors of less than 20%. 

Basin 

40N
CARs 

17ECHAM
s 

6R4CCSM
 

10R4CSIRO
 

5R4CAN
 

5R4GISSH 

6R4GISSR 

Zambezi 29% 42% -41% -27% >100% >100% 29% 
Nile >100% >100% <-50% -42% >100% >100% >100% 
Niger >100% >100% -33% 4% >100% >100% >100% 
Volta >100% >100% 8% 30% >100% >100% >100% 
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Basin 

40N
CARs 

17ECHAM
s 

6R4CCSM
 

10R4CSIRO
 

5R4CAN
 

5R4GISSH 

6R4GISSR 
Congo >100% >100% -37% -22% >100% 2% 69% 
Orange >100% >100% 99% >100% >100% 44% 93% 
Amazon -39% -46% <-50% <-50% 9% <-50% <-50% 
Orinoco <-50% <-50% <-50% <-50% 6% <-50% <-50% 
Murray_Australia -10% >100% <-50% -47% >100% -36% 27% 
Indus >100% >100% <-50% -37% >100% <-50% <-50% 
Huang_He >100% >100% >100% >100% >100% >100% >100% 
Ganges 22% 74% <-50% -46% 65% <-50% <-50% 
Tigris_Euphrates <-50% -33% <-50% <-50% 10% -37% <-50% 
Baltic 28% 59% 36% 43% 42% 70% 15% 
Syrdarja 95% >100% -19% -13% 31% -17% <-50% 
Black_Sea -21% -3% -49% -43% 9% 3% <-50% 
Colorado >100% >100% >100% >100% >100% >100% -40% 
Columbia >100% >100% 89% 97% >100% 58% 53% 
Mississippi <-50% <-50% 26% 28% -17% -36% <-50% 
Southeast_US -48% -23% -25% -15% 7% -19% <-50% 
US_Northeast -24% -30% 25% 20% 12% -8% -29% 

 

 

 

 
Figure B-1. Mean model bias in mean annual precipitation for four model ensembles 
relative to the CRU historical baseline between 1941-1990 
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Figure B-2. Mean model bias in annual precipitation COV for four ensembles relative 
to the CRU historical baseline between 1941-1990. 
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