Genome editing to reveal peptidergic heterogeneity of POMC neurons regulating energy and glucose balance
Low, Cho.
2018
-
Abstract: Diabetes is a global health concern that has dire consequences if
left unchecked. However, the pathogenesis of diabetes is still not completely understood
and so effective treatments are lacking. Growing evidence has shown that neurons in the
brain, particularly those in the hypothalamus, play an important role in regulating whole
body blood glucose, and that their dysfunctions ... read morecontribute to the development of diabetes.
However, the complexity of the neural system, and difficulties in probing neuronal
functions in vivo, have left us with an incomplete understanding of both the molecular
mechanism and neuro-circuitry of centralized blood glucose regulation. In our recent study,
we have perturbed a major group of glucose-sensing neurons in the hypothalamus,
Pro-opiomelancortin (POMC) neurons in the arcuate nucleus (ARC). We observed that these
groups of neurons play a significant role in regulating whole body glucose homeostasis.
Here we on POMC neurons and utilize a battery of genetic approaches to securitized the
machinery operating within them. Briefly, using a chemogenetic approach with both cell type
and brain region specificity to acutely manipulate the firing of these neurons, we observed
that these neurons directly regulate energy expenditure, locomotion and blood glucose
levels. Utilizing novel CRISPR technology in vivo, we specifically ablated POMC in the ARC.
We found that POMC is necessary for energy and locomotor homeostasis, but has only a
secondary effect on glucose levels. Thus, we hypothesize that another key neuropeptide
found in POMC neurons, cocaine amphetamine regulated transcript (CART) may control glucose
homeostasis. Using a similar approach, we show that CART is necessary to maintain blood
glucose levels and that its depletion in Type 1 diabetes (T1D) and Type 2 diabetes (T2D)
mouse models contributes to the development of hyperglycemia. Finally, using an unbiased
approach and terminal inhibition we conclude that the paraventricular nucleus of the
hypothalamus (PVH) is the main downstream glucoregulatory target. Collectively, these
findings provide direct evidence to the underlying molecular mechanisms of POMC neuronal
activity and the neural circuits used to employ them. Our study has provided novel insight
into brain-regulated glucose homeostasis and has identified potential targets for treating
and preventing diabetes.
Thesis (Ph.D.)--Tufts University, 2018.
Submitted to the Dept. of Cell, Molecular & Developmental Biology.
Advisors: Dong Kong, and Maribel Rios.
Committee: Daniel Jay, Leon Reijmers, and Peng Yi.
Keyword: Neurosciences.read less - ID:
- f7623q80m
- Component ID:
- tufts:26070
- To Cite:
- TARC Citation Guide EndNote